首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Service-oriented architectures and applications have gained wide acceptance in the Grid computing community. A number of tools and middleware systems have been developed to support application development using Grid Services architectures. Most of these efforts, however, have focused on low-level support for management and execution of Grid services, management of Grid-enabled resources, and deployment and execution of applications that make use of Grid services. Simple-to-use service development tools, which would allow a Grid service developer to leverage Grid technologies without needing to know low-level details, are becoming increasingly important for wider application of the Grid. In this paper, we describe an open-source, extensible toolkit, called Introduce, that supports easy development and deployment of Web Services Resource Framework (WSRF) compliant services. Introduce is designed to reduce the service development and deployment effort by hiding low level details of the Globus Toolkit and to enable the implementation of strongly typed services. In strongly typed services, a service produces and consumes data types that are well-defined and published in the Grid. This enables data-level syntactic interoperability so that clients and services can access and consume data elements programmatically and correctly. We expect that enabling strongly typed Grid services while lowering the difficulty of entry to the Grid via toolkits like Introduce will have a major impact to the success of the Grid and its wider adoption as a viable technology of choice in the commercial sector as well as in academic, medical, and government research.  相似文献   

2.
Grid programming: some indications where we are headed   总被引:2,自引:0,他引:2  
D. Laforenza 《Parallel Computing》2002,28(12):1733-1752
Grid computing enables the development of large scientific applications on an unprecedented scale. Grid-aware applications, also called meta-applications or multi-disciplinary applications, make use of coupled computational resources that are not available at a single site. In this light, the Grids let scientists solve larger or new problems by pooling together resources that could not be coupled easily before. It is well known that the programmer’s productivity in designing and implementing efficient distributed/parallel applications on high-performance computers is still usually a very time-consuming task. Grid computing makes the situation worse. Consequently, the development of Grid programming environments that would enable programmers to efficiently exploit this technology is an important and hot research issue.

After an introduction on the main Grid programming issues, this paper will review the most important approaches/projects conducted in this field worldwide.  相似文献   


3.
eScience is rapidly changing the way we do research. As a result, many research labs now need non-trivial computational power. Grid and voluntary computing are well-established solutions for this need. However, not all labs can effectively benefit from these technologies. In particular, small and medium research labs (which are the majority of the labs in the world) have a hard time using these technologies as they demand high visibility projects and/or high-qualified computer personnel. This paper describes OurGrid, a system designed to fill this gap. OurGrid is an open, free-to-join, cooperative Grid in which labs donate their idle computational resources in exchange for accessing other labs’ idle resources when needed. It relies on an incentive mechanism that makes it in the best interest of participants to collaborate with the system, employs a novel application scheduling technique that demands very little information, and uses virtual machines to isolate applications and thus provide security. The vision is that OurGrid enables labs to combine their resources in a massive worldwide computing platform. OurGrid is in production since December 2004. Any lab can join it by downloading its software from .  相似文献   

4.
Scalability, flexibility, quality of service provisioning, efficiency and robustness are the desired characteristics of most computing systems. Although the emerging Grid computing paradigm is scalable and flexible, achieving both efficiency and quality of service provisioning in Grids is a challenging task but is necessary for the wide adoption of Grids. Grid middleware should also be robust to uncertainties such as those in user-estimated runtimes of Grid applications. In this paper, we present a complete middleware framework for Grids that achieves user satisfaction by providing QoS guarantees for Grid applications, cost effectiveness by efficiently utilizing resources and robustness by intelligently handling uncertain runtimes of applications.  相似文献   

5.
We address the problem of porting parallel distributed applications from static homogeneous cluster environments to dynamic heterogeneous Grid resources. We introduce a generic technique for adaptive load balancing of parallel applications on heterogeneous resources and evaluate it using a case study application: a Virtual Reactor for simulation of plasma chemical vapour deposition. This application has a modular architecture with a number of loosely coupled components suitable for distribution over the Grid. It requires large parameter space exploration that allows using Grid resources for high-throughput computing. The Virtual Reactor contains a number of parallel solvers originally designed for homogeneous computer clusters that needed adaptation to the heterogeneity of the Grid. In this paper we study the performance of one of the parallel solvers, apply the technique developed for adaptive load balancing, evaluate the efficiency of this approach and outline an automated procedure for optimal utilization of heterogeneous Grid resources for high-performance parallel computing.  相似文献   

6.
A Taxonomy of Workflow Management Systems for Grid Computing   总被引:12,自引:0,他引:12  
With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.  相似文献   

7.
A Survey on Wireless Grid Computing   总被引:3,自引:0,他引:3  
Wireless Grid computing extends the traditional Grid computing paradigm to include a diverse collection of mobile devices enabled to communicate using radio frequency, infrared, optical and other wireless mechanisms. Among the devices coming into use in wireless grid implementations are tiny sensors, Radio Frequency Identification tags (RFID). Personal Digital Assistants (PDAs) and paging devices, cellular phones, hand-held or wearable computers, laptop computers and special purpose computers embedded into many modern appliances [8, 26, 29]. Though many of these devices were initially developed to serve a specific, autonomous purpose, their potential for cooperation through the sharing of resources and capabilities, and the massive amounts of resources available due to their numbers, is quickly leading to applications resembling traditional Grid computing. This paper presents a survey of the current state of wireless grid computing. This includes a discussion of the cooperation between wired and wireless grids including ways in which wireless grids extend the capabilities of existing wired grids. It also discusses many of the new capabilities and resources available to wireless grid devices and a sampling of several applications of these new resources. It provides a sampling of many current research endeavors in the wireless grid arena and an examination of a number of the potential challenges resulting from the unique characteristics of wireless grid devices.  相似文献   

8.
Grid computing technologies are now being largely deployed with the widespread adoption of the Globus Toolkit as the industrial standard Grid middleware. However, its inherent steep learning curve discourages the use of these technologies for non‐experts. Therefore, to increase the use of Grid computing, it is important to have high‐level tools that simplify the process of remote task execution. In this paper we introduce a middleware, developed on top of the Java Commodity Grid, which offers an object‐oriented, user‐friendly application programming interface, from the Java language, which eases remote task execution for computationally intensive applications. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Over the past few years, research and development in bioinformatics (e.g. genomic sequence alignment) has grown with each passing day fueling continuing demands for vast computing power to support better performance. This trend usually requires solutions involving parallel computing techniques because cluster computing technology reduces execution times and increases genomic sequence alignment efficiency. One example, mpiBLAST is a parallel version of NCBI BLAST that combines NCBI BLAST with message passing interface (MPI) standards. However, as most laboratories cannot build up powerful cluster computing environments, Grid computing framework concepts have been designed to meet the need. Grid computing environments coordinate the resources of distributed virtual organizations and satisfy the various computational demands of bioinformatics applications. In this paper, we report on designing and implementing a BioGrid framework, called G‐BLAST, that performs genomic sequence alignments using Grid computing environments and accessible mpiBLAST applications. G‐BLAST is also suitable for cluster computing environments with a server node and several client nodes. G‐BLAST is able to select the most appropriate work nodes, dynamically fragment genomic databases, and self‐adjust according to performance data. To enhance G‐BLAST capability and usability, we also employ a WSRF Grid Service Portal and a Grid Service GUI desk application for general users to submit jobs and host administrators to maintain work nodes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Improvements in the performance of processors and networks have made it feasible to treat collections of workstations, servers, clusters and supercomputers as integrated computing resources or Grids. However, the very heterogeneity that is the strength of computational and data Grids can also make application development for such an environment extremely difficult. Application development in a Grid computing environment faces significant challenges in the form of problem granularity, latency and bandwidth issues as well as job scheduling. Currently existing Grid technologies limit the development of Grid applications to certain classes, namely, embarrassingly parallel, hierarchical parallelism, work flow and database applications. Of all these classes, embarrassingly parallel applications are the easiest to develop in a Grid computing framework. The work presented here deals with creating a Grid‐enabled, high‐throughput, standalone version of a bioinformatics application, BLAST, using Globus as the Grid middleware. BLAST is a sequence alignment and search technique that is embarrassingly parallel in nature and thus amenable to adaptation to a Grid environment. A detailed methodology for creating the Grid‐enabled application is presented, which can be used as a template for the development of similar applications. The application has been tested on a ‘mini‐Grid’ testbed and the results presented here show that for large problem sizes, a distributed, Grid‐enabled version can help in significantly reducing execution times. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
An ant algorithm for balanced job scheduling in grids   总被引:1,自引:1,他引:0  
Grid computing utilizes the distributed heterogeneous resources in order to support complicated computing problems. Grid can be classified into two types: computing grid and data grid. Job scheduling in computing grid is a very important problem. To utilize grids efficiently, we need a good job scheduling algorithm to assign jobs to resources in grids.In the natural environment, the ants have a tremendous ability to team up to find an optimal path to food resources. An ant algorithm simulates the behavior of ants. In this paper, we propose a Balanced Ant Colony Optimization (BACO) algorithm for job scheduling in the Grid environment. The main contributions of our work are to balance the entire system load while trying to minimize the makespan of a given set of jobs. Compared with the other job scheduling algorithms, BACO can outperform them according to the experimental results.  相似文献   

12.
Analysis and Provision of QoS for Distributed Grid Applications   总被引:5,自引:0,他引:5  
Grid computing provides the infrastructure necessary to access and use distributed resources as part of virtual organizations. When used in this way, Grid computing makes it possible for users to participate in collaborative and distributed applications such as tele-immersion, visualization, and computational simulation. Some of these applications operate in a collaborative mode, requiring data to be stored and delivered in a timely manner. This class of applications must adhere to stringent real-time constraints and Quality-of-Service (QoS) requirements. A QoS management approach is therefore required to orchestrate and guarantee the timely interaction between such applications and services. We discuss the design and a prototype implementation of a QoS system, and demonstrate how we enable Grid applications to become QoS compliant. We validate this approach through a case study of an image processing task derived from a nanoscale structures application.  相似文献   

13.
Grid Economics in Departmentalized Enterprises   总被引:3,自引:0,他引:3  
The application of Grid technology is finally spreading from engineering and natural science-related industrial sectors to other industries with a high demand for computing applications. However, the diffusion of Grid technology within these sectors is often hindered by a lack of the incentive to share the computational resources across departments or branches even within the same enterprise. A promising way of overcoming these barriers is the introduction of a pricing mechanism for the use of Grid-based resources. This work introduces such a pricing approach to Grid computing and provides three simulation scenarios to illustrate the effectiveness of such an economized Grid solution. The simulation results indicate that the pooling of information technology resources can produce a reduction of 33% in cost compared to individual and dedicated servers. However, with a price-based allocation of computing resources, a further 10% of cost reduction can be achieved by introducing an auction mechanism. Therefore we claim that there is huge cost reduction potential in departmentalized enterprises beyond the savings that can be achieved by a utility-based allocation of computing resources, if economically measured allocation methods are combined with advanced refining and learning methods in the allocation process.  相似文献   

14.
目的:研究网格和P2P计算及其应用的趋同性.方法:利用对比分析方法详细讨论了网格和P2P的相似性和差别,并指出了实现两者优势互补的切入点.结果:两者的差异性呈现缩小趋势,特别在应用领域其趋同性日益突出.结论:基于两者的新型计算模式势必问世,尽管要面临一些技术挑战,但将对未来计算模式产生深远影响.  相似文献   

15.
A Grid environment can be viewed as a virtual computing architecture that provides the ability to perform higher throughput computing by taking advantage of many computers geographically dispersed and connected by a network. Bioinformatics applications stand to gain in such a distributed environment in terms of increased availability, reliability and efficiency of computational resources. There is already considerable research in progress toward applying parallel computing techniques on bioinformatics methods, such as multiple sequence alignment, gene expression analysis and phylogenetic studies. In order to cope with the dimensionality issue, most machine learning methods either focus on specific groups of proteins or reduce the size of the original data set and/or the number of attributes involved. Grid computing could potentially provide an alternative solution to this problem, by combining multiple approaches in a seamless way. In this paper we introduce a unifying methodology coupling the strengths of the Grid with the specific needs and constraints of the major bioinformatics approaches. We also present a tool that implements this process and allows researchers to assess the computational needs for a specific task and optimize the allocation of available resources for its efficient completion.  相似文献   

16.
关于网格及其它分布计算技术的若干问题的讨论   总被引:5,自引:0,他引:5  
1.引言在“网格:面向虚拟组织的资源共享技术”一文中,我们主要给出了由Ian Foster等定义的网格及相关基本概念和研究领域,讨论了网格的基本理念和关键技术。在“网格体系结构详解”一文中,详述了Globus项目提出的网格体系结构的构成及功能。这些内容旨在说明网格是什么。实际上,我们也可以从另一方面,或不同的角度来观察和认识网格。比  相似文献   

17.
The Grid provides unique opportunities for high-performance computing through distributed applications that execute over multiple remote resources. Participating institutions can form a virtual organization to maximize the utilization of collective resources as well as to facilitate collaborative projects. However, there are two design aspects in distributed environments like the Grid that can easily clash: security and resource sharing. It may be that resources are secure but are not entirely conducive to resource sharing, or networks are wide open for resource sharing but sacrifice security as a result. We developed REMUS, a rerouting and multiplexing system that provides a compromise through connection rerouting and wrappers. REMUS reroutes connections using proxies, ports and protocols that are already authorized across firewalls, avoiding the need to make new openings through the firewalls. We also encapsulate applications within wrappers, transparently rerouting the connections among Grid applications without modifying their programs. In this paper, we describe REMUS and the tests we conducted across firewalls using two Grid middleware case studies: Globus Toolkit 2.4 and Nimrod/G 3.0.  相似文献   

18.
如何聚合网络中分布异构的计算资源来解决大规模的科学计算问题,和如何减少并行程序设计的复杂性,一直是网格计算研究的难点之一。文章提出了一种基于CORBA构件技术的计算网格新思想,构造了一个计算网格的模型(CCGM)。该模型能够充分地利用构件技术带来的可组装和易管理的特性来形成网格计算。并通过问题的抽象定义和使用ParIDL工具将问题的定义映射到CCGM之上,简化了计算网格应用的开发。通过测试和分析CCG(ComponentbasedComputationalGrid)系统,表明CCG系统具有较好的加速比。  相似文献   

19.
The Grid Computing paradigm aims to create a ‘virtual’ and powerful single computer with many distributed resources to solve resource intensive problems. The term ‘gridification’ involves the process of transforming a conventional application to run in a Grid environment. In that sense, the more automatic this process is, the easier is for developers with low expertise in parallel and distributed computing to take advantage of these resources. To date, many semiautomatic gridifiers were built to support different gridification approaches and application code structures or anatomies. Furthermore, agricultural simulation applications have a particular common anatomy based on biophysical entities, such as animals, crops, and pastures, which are updated by actions, such as growing animals, growing crops, and growing pastures, along simulation execution. However, this anatomy is not fully supported by any of the existing gridifiers. Thus, this paper presents Agricultural Simulation Applications Gridifier (ASAG), a method for easy gridification of agricultural simulation applications, and its Java implementation, named Java ASAG (JASAG). The main design drivers of JASAG are middleware independence, separation of business logic and Grid behavior, and performance increase. An experimental evaluation showing the feasibility of the gridification method and its implementation is also reported, which resulted in speedups of up to 25 by using a real agricultural simulation application. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
网格工作流研究现状及存在问题   总被引:4,自引:1,他引:3  
网格计算成为当前业界研究的热点,网格工作流能够方便地构建、执行、管理和监控网格应用,使得网格应用能够自动、高效地实施。由于网格的动态性、分布性、异构性和自治性导致传统工作流的一些方法和技术不能有效地处理网格环境中的有关问题。本文首先比较了网格工作流与传统工作流的不同,指出了网格工作流研究的必要性,然后介绍了当前网格工作流研究的现状,归纳了三种网络工作流规范及四种网格工作流系统。最后,给出了网格工作流研究存在的问题及研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号