首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the fast development of telecommunications and the great demand of bandwidth, optical wireless communication (OWC) has become a promising trend. OWC offers flexible networks for both indoor and outdoor communications providing high security, high speed and a license free spectrum. Data transmission over indoor OWC systems with diffused channel model at high speed will extend the channel impulse response over several symbol periods with many reflections causing inter-symbol interference. This interference distorts the data symbols being transmitted and affects the signal recovery at the receiver side. This paper studies error control coding for OWC systems over additive white Gaussian noise and ceiling bounce channel models. It considers Hamming coding and channel equalization for unipolar optical orthogonal frequency division multiplexing (OFDM) system. The objective is to mitigate the channel distortion, and hence achieve reliable transmission and correct detection at the receiver side.  相似文献   

2.
杨大龙  陈大海  邝文  张祺 《电讯技术》2017,57(12):1408-1414
为满足航空信道条件下的远距离宽带数据传输需求,基于单载波频域均衡传输(SC-FDE)体制,采用8 PSK调制体制进行了宽带数字接收机的设计,包括传输帧同步、载波同步、定时同步、信道估计和频域均衡.同时,为保证灵活应用的需求,采用数字内插的方式进行了可变传输速率设计.基于Xilinx现场可编程门阵列(FPGA)平台对硬件实现进行优化,最终实现了传输速率能够从112.5 Mbit/s覆盖到900 Mbit/s的数传接收机.仿真分析和硬件测试结果表明,该接收解调设备能够实现很好的性能指标,同时SC-FDE架构具备有效补偿多径传播影响的能力,适合应用于高动态无线宽带航空数据传输系统中.  相似文献   

3.
在宽带无线通信中,传统的单载波时域均衡的方法由于计算的复杂度已很难适应。本文的叙述了的SC/FDE和OFDM系统结构、关键技术和算法,详细的比较了它们在结构和性能上的差异和共同点。最后给出了双模结构的可能性。  相似文献   

4.
朱凤  刘乃安 《现代电子技术》2004,27(10):60-62,65
OFDM技术是一种多栽波技术,在高速无线数据传输领域有很大的应用前景。本文在分析宽带无线信道性能特点的基础上,介绍了OFDM技术的基本原理和实现方法,并讨论了OFDM的关键技术及其在解决移动信道传输问题上的优势。最后详细给出了OFDM系统收发信机的框图,并展望了OFDM技术在移动通信领域的发展趋势。  相似文献   

5.
Shallow underwater acoustic (UWA) channel exhibits rapid temporal variations, extensive multipath spreads, and severe frequency-dependent attenuations. So, high data rate communication with high spectral efficiency in this challenging medium requires efficient system design. Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO–OFDM) is a promising solution for reliable transmission over highly dispersive channels. In this paper, we study the equalization of shallow UWA channels when a MIMO–OFDM transmission scheme is used. We address simultaneously the long multipath spread and rapid temporal variations of the channel. These features lead to interblock interference (IBI) along with intercarrier interference (ICI), thereby degrading the system performance. We describe the underwater channel using a general basis expansion model (BEM), and propose time-domain block equalization techniques to jointly eliminate the IBI and ICI. The block equalizers are derived based on minimum mean-square error and zero-forcing criteria. We also develop a novel approach to design two time-domain per-tone equalizers, which minimize bit error rate or mean-square error in each subcarrier. We simulate a typical shallow UWA channel to demonstrate the desirable performance of the proposed equalization techniques in Rayleigh and Rician fading channels.  相似文献   

6.
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术具有很强的抗多径能力及较高的频谱利用率,能在无线信道中提供可靠的高速数据传输,是未来通信系统的主流技术之一,例如LTE、WiMax等新兴标准都利用OFDM调制技术进行下行数据传输.同时,OFDM技术对接收系统的同步精度要求严格,因此同步技术是实现OFDM通信系统的关键技术之一.文中对OFDM同步技术进行了深入研究,利用FPGA平台设计完成了基于Schmidl同步算法的OFDM通信接收系统,并利用真实仿真平台进行了仿真验证.  相似文献   

7.
为了适应高速宽带无线通信的需要,本文在一种高速数字并行接收机(APRX)结构的基础上,提出了一种时变信道下的信道估计和均衡方法。使用伪随机(pseudo-randomnumber,PN)序列相关进行信道估计,将所得到的信道频率响应粗估计按照一个DFT块的长度在一帧内进行线性内插得到信道频率响应细估计,将其用来在频域进行信道均衡。这种结构能适应高速率传输的要求,并且能有效地对抗时间和频率选择性衰落。仿真结果表明,在多径衰落信道下,APRX已经无法工作,而本文提出的数字并行接收机的信道估计和均衡方法有较好的性能,并且该方法实现简单,便于应用。  相似文献   

8.
何卫东  侯嘉 《通信技术》2010,43(11):28-30
正交频分复用(OFDM)技术是下一代移动通信的核心技术之一。其最突出的优点是频谱利用率高和抗多径时延能力强,适合未来高速宽带无线通信的应用。OFDM技术通过将频率选择性多径衰落信道在频域内转换为平坦信道,减小了多径衰落的影响。根据OFDM基本原理特构建了一个OFDM通信系统仿真模型,分析了在不同调制方式、不同信道下信道编码对系统性能的影响。仿真结果表明,采用信道编码可有效的降低OFDM系统的误码率。  相似文献   

9.
The cosine modulated filter bank (CMFB) is introduced as a multicarrier modulation (MCM) technique for wideband data transmission over wireless channels. Under the name discrete wavelet multitone modulation, CMFB has been considered for data transmission over digital subscriber lines. We propose a new receiver structure that is different from those proposed previously. The new structure simplifies the task of channel equalization, by reducing the number of equalizer parameters significantly. We also propose a novel blind equalization algorithm that fits very nicely in the proposed structure. Moreover, we discuss the bandwidth efficiency of the proposed CMFB-MCM system and show that it is superior to the conventional (single carrier) quadrature amplitude modulation (QAM) and orthogonal frequency-division multiplexing (OFDM). The CMFB is found to be a signal processing block that stacks a number of vestigial sideband modulated signals in a number of overlapping subchannels in the most efficient way. The proposed CMFB-MCM is also compared to OFDM with respect to bit-error rate performance. Under the conditions that the channel impulse response duration remains less than the length of cyclic prefix, OFDM is found marginally superior to CMFB-MCM. However, OFDM degrades very fast when the channel impulse response duration exceeds the length of the cyclic prefix. CMFB-MCM, on the other hand, is found less sensitive to variations in channel impulse response duration.  相似文献   

10.
Frequency-domain equalization (FDE) is an effective technique that exhibits the property of relatively low complexity which grows with increasing the number of symbols of dispersion in multipath propagation environments for broadband wireless communications compared with the conventional time-domain equalization. However, in practical broadband wireless communications, there exists not only multipath but also narrowband interference (NBI). The conventional FDE methods do not consider NBI and their performance degrades obviously in such case. In this paper, we propose a new optimization criterion which can effectively suppress NBI to obtain the maximum decision signal-to-noise ratio. The proposed scheme employs a conventional adaptive algorithm such as least-mean-square or recursive-least-square and operates in the spatial-frequency domain, which is concerned with the use of FDE and space diversity within block transmission schemes jointly. The simulation results show that the proposed schemes have better error-rate performance with low complexity and can be used even in the presence of strong NBI, compared to other existing adaptive FDE algorithms.  相似文献   

11.
A channel‐estimate‐based frequency‐domain equalization (CE‐FDE) scheme for wireless broadband single‐carrier communications over time‐varying frequency‐selective fading channels is proposed. Adaptive updating of the FDE coefficients are based on the timely estimate of channel impulse response (CIR) to avoid error propagation that is a major source of performance degradation in adaptive equalizers using least mean square (LMS) or recursive least square (RLS) algorithms. Various time‐domain and frequency‐domain techniques for initial channel estimation and adaptive updating are discussed and evaluated in terms of performance and complexity. Performance of uncoded and coded systems using the proposed CE‐FDE with diversity combining in different time‐varying, multi‐path fading channels is evaluated. Analytical and simulation results show the good performance of the proposed scheme suitable for broadband wireless communications. For channels with high‐Doppler frequency, diversity combining substantially improves the system performance. For channels with sparse multi‐path propagation, a tap‐selection strategy used with the CE‐FDE systems can significantly reduce the complexity without sacrificing the performance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
MLSE and MAP Equalization for Transmission Over Doubly Selective Channels   总被引:1,自引:0,他引:1  
In this paper, equalization for transmission over doubly selective channels is discussed. The symbol-by-symbol maximum a posteriori probability (MAP) equalizer and the maximum-likelihood sequence estimation (MLSE) are discussed. The doubly selective channel is modeled using the basis expansion model (BEM). Using the BEM allows for an easy and low-complexity mechanism for constructing the channel trellis to implement the MLSE and the MAP equalizer. The MLSE and the MAP equalizer are implemented for single-carrier transmission and for multicarrier transmission implemented using orthogonal frequency-division multiplexing (OFDM). In this scenario, a complexity-diversity tradeoff can be observed. In addition, we propose a joint estimation and equalization technique for doubly selective channels. In this joint estimation and equalization technique, the channel state information (CSI) is obtained in an iterative manner. Simulation results show that the performance of the joint channel estimation and equalization approaches the performance when perfect CSI is available at the receiver.  相似文献   

13.
Orthogonal frequency division multiplexing (OFDM) has been applied in broadband wireline and wireless systems for high data rate transmission where severe intersymbol interference (ISI) always occurs. The conventional OFDM system provides advantages through conversion of an ISI channel into ISI-free subchannels at multiple frequency bands. However, it may suffer from channel spectral s and heavy data rate overhead due to cyclic prefix insertion. Previously, a new OFDM framework, the precoded OFDM, has been proposed to mitigate the above two problems through precoding and conversion of an ISI channel into ISI-free vector channels. In this paper, we consider the application of the precoded OFDM system to efficient scalable video transmission. We propose to enhance the precoded OFDM system with adaptive vector channel allocation to provide stronger protection against errors to more important layers in the layered bit stream structure of scalable video. The more critical layers, or equivalently, the lower layers, are allocated vector channels of higher transmission quality. The channel quality is characterized by Frobenius norm metrics; based on channel estimation at the receiver. The channel allocation information is fed back periodically to the transmitter through a control channel. Simulation results have demonstrated the robustness of the proposed scheme to noise and fading inherent in wireless channels.  相似文献   

14.
This paper is concerned with the use of frequency-domain equalization (FDE) and space diversity within block transmission schemes for broadband wireless communications. The expected performance with both multicarrier (MC) and single-carrier (SC) modulations is emphasized, when a cyclic prefix, long enough to cope with the maximum relative channel delay, is appended to each transmitted block. A set of numerical results is presented and discussed, with the help of appropriate, analytical performance bounds which are conditional on a given channel realization. These bounds are used to explain the performance advantage of the SC/FDE option, the benefits of space diversity, and the impact of the criterion for computing the FDE parameters.  相似文献   

15.
罗涛  李少谦 《中兴通讯技术》2006,12(2):14-16,20
未来无线通信系统需要更高的数据传输速率和更好的服务质量,因此需要系统容量大幅度提高。在有限的无线频谱资源条件下,只有极大地提高频谱利用率才能使系统容量更高。采用多输入多输出(MIMO)天线技术可以满足要求。MIMO技术的主要研究方向包括:MIMO信道、MIM0收发技术、分布式MIM0和MIM0应用。MIM0技术是无线通信领域重大的技术突破,将成为未来无线觅带移动通信系统和无线宽带接入系统的关键技术。  相似文献   

16.
In broadband wireless communications, multipath propagation often results in an overall channel with a long impulse response that could span tens or even hundreds of symbol intervals. To equalize such long channels, conventional single-carrier time-domain equalization becomes infeasible due to high computational complexity. Relying on the use of fast Fourier transform, single-carrier frequency-domain equalization (SC-FDE) offers low-complexity equalization as well as other desirable features. In this correspondence, we prove that SC-FDE is also capable of collecting full multipath diversity even without channel coding. As far as we are aware, this is the first analytical proof of the diversity gain of SC-FDE. This conclusion justifies those existing simulation results regarding the performance comparison between SC-FDE and orthogonal frequency-division multiplexing (OFDM), and offers important guidelines for further improving SC-FDE and OFDM  相似文献   

17.
郑义  刘芳 《现代电子技术》2006,29(13):38-40
为了研究单用户分组传输系统设计的问题,基于线性预编码技术下的无线频率选择性信道,证明在有限冲击响应滤波器信道中,采用线性预编码技术可以获得很好的信道均衡。分组传输中的线性预编码是指一个线性空间到另外一个线性空间的变换,以循环前缀或迫零方式的冗余码片可以消除分组间干扰。同时OFDM系统也可以采用线性预编码技术,结果表明在很多方面采用线性预编码技术的OFDM系统将优于传统的OFDM系统。  相似文献   

18.
Single‐carrier frequency division multiple access (SC‐FDMA) systems with space frequency block coding (SFBC) transmissions achieve both spatial and frequency diversity gains in wireless communications. However, SFBC SC‐FDMA schemes using linear detectors suffer from severe performance deterioration because of noise enhancement propagation and additive noise presence in the detected output. Both issues are similar to inter‐symbol‐interference (ISI). Traditionally, SC‐FDMA system decision feedback equalizer (DFE) is often used to eliminate ISI caused by multipath propagation. This article proposes frequency domain turbo equalization based on nonlinear multiuser detection for uplink SFBC SC‐FDMA transmission systems. The presented iterative receiver performs equalization with soft decisions feedback for ISI mitigation. Its coefficients are derived using minimum mean squared error criteria. The receiver configuration study is Alamouti's SFBC with two transmit and two receive antennas. New receiver approach is compared with the recently proposed suboptimal linear detector for SFBC SC‐FDMA systems. Simulation results confirm that the performance of the proposed iterative detection outperforms conventional detection techniques. After a few iterations, bit‐error‐rate performance of the proposed receiver design is closely to the matched filter bound. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The growing popularity of both multiple-input multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM) systems has created the need for adaptive modulation to integrate temporal, spatial and spectral components together. In this article, an overview of some adaptive modulation schemes for OFDM is presented. Then a new scheme consisting of a combination of adaptive modulation, OFDM, high-order space-frequency block codes (SFBC), and antenna selection is presented. The proposed scheme exploits the benefits of space–frequency block codes, OFDM, adaptive modulation and antenna selection to provide high-quality transmission for broadband wireless communications. The spectral efficiency advantage of the proposed system is examined. It is shown that antenna selection with adaptive modulation can greatly improve the performance of the conventional SFBC–OFDM systems.  相似文献   

20.
In this letter, a differential space-frequency modulation (DSFM) scheme is proposed for multiple input multiple-output (MIMO)-orthogonal frequency-division multiplexing (OFDM) systems in broadband wireless communications. We assume that the fading channels keep constant only within each OFDM block, and may change independently from one OFDM block to another. The differential schemes proposed for MIMO-OFDM systems in the literature cannot successfully decode with such a rapidly fading channel, since the successful decoding of the previously existing schemes relies on the assumption that the fading channel keeps constant within a period of several OFDM blocks, and it changes slowly from a period of several OFDM blocks to another. In our proposed DSFM scheme, the transmitted signals are differentially encoded in the frequency domain within each OFDM block. Thus, the differential decoding can be performed over subcarriers within each single OFDM block. Furthermore, if a statistical channel power-delay profile (PDP) is known at the transmitter, we propose to create a smooth logical channel to improve the performance of the DSFM scheme. We obtain the smooth logical channel by sorting the channel frequency responses over subcarriers from a statistical point of view. If the logical channel is not smooth enough, we further consider a pruning process in which we use only the "good" part of the channel and get rid of the "bad" part of the channel. Simulation results show that the proposed DSFM scheme over a smooth logical channel (with pruning, if necessary) performs well for various channel PDPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号