首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hydrogenation of CO over an Rh vanadate (RhVO4) catalyst supported on SiO2 (RhVO4/SiO2) has been investigated after H2 reduction at 500°C, and the results are compared with those of vanadia-promoted (V2O5–Rh/SiO2) and unpromoted Rh/SiO2 catalysts. The mean size of Rh particles, which were dispersed by the decomposition of RhVO4 after the H2 reduction, was smaller (41 Å) than those (91–101 Å) of V2O5–Rh/SiO2 and Rh/SiO2 catalysts. The RhVO4/SiO2 catalyst showed higher activity and selectivity to C2 oxygenates than the unpromoted Rh/SiO2 catalyst after the H2 pretreatment. The CO conversion of the RhVO4/SiO2 catalyst was much higher than that of V2O5–Rh/SiO2 catalyst, and the yield of C2 oxygenates increased. We also found that the RhVO4/SiO2 catalyst can be regenerated by calcination or O2 treatment at high temperature after the reaction.  相似文献   

2.
Pt–In/Nb2O5 catalysts were investigated using temperature-programmed reduction (TPR) and time differential perturbed angular correlation (TDPAC) experiments. The results indicated the presence of In–O surface complexes for low loading In/Nb2O5 and Pt–In/Nb2O5 catalysts after calcination. These complexes did not form a In2O3 crystalline phase. After reduction of the Pt–In/Al2O3 catalyst, In is present in different states. A fraction of In atoms is bonded to niobia surface, as a surface complex that does not show crystalline structure similar to bulk In2O3. Other fraction of In atoms interacts with platinum, in the form of an alloy, in locations that present trigonal symmetry.  相似文献   

3.
Co–Nb2O5–SiO2 catalysts were prepared using three different sol–gel procedures: (i) the colloidal sol–gel method using NbCl5 and SiCl4 as precursors; (ii) the polymeric sol–gel method using niobium ethoxide and tetraethyl-orthosilicate (TEOS); (iii) an intermediate procedure between the colloidal and polymeric sol–gel method in which the precursors were those utilized in the CSG but dissolved in a mixture of anhydrous ethanol and CCl4. In all procedures, the elimination of the solvent carried out between 80 and 110°C was followed by a reduction in hydrogen flow (30 ml min−1) at 773 K. Following these procedures, samples containing 10 wt.% Co and 15 wt.% niobium oxide (expressed as Nb2O5) were obtained. The characterization of the catalysts was performed using various techniques: N2 adsorption and desorption curves at 77 K, NH3- and H2-chemisorption, TPO, XPS, XRD, and solid state 1H MAS-NMR. Hydrogenolysis of butane was evaluated. The low reaction rates are assigned to the effect of the metal size, whereas the isobutane selectivity as well as the relatively high stability is due to the acidity of the support.  相似文献   

4.
C. Martín  G. Solana  P. Malet  V. Rives   《Catalysis Today》2003,78(1-4):365-376
WO3/Nb2O5-supported samples prepared by impregnation are characterised by X-ray diffraction (XRD), Raman spectroscopy and X-ray absorption spectroscopy (XAS) at the W–L3 absorption edge, as well as temperature programmed reduction (TPR) and FT-IR monitoring of pyridine adsorption. Results are compared with those obtained for WO3/Al2O3 samples prepared in the same conditions, showing that niobia is able to disperse tungsta better than alumina does. Formation of a crystalline WO3 needs larger tungsten contents on niobia than on alumina, since tungsten solution into niobia is easier than into alumina. Raman and XAS spectra recorded under ambient conditions suggest that similar WOx species are formed on both supports at tungsten contents 0.5–1 theoretical monolayers; however, TPR results for the low tungsten loaded samples indicate that, when reduction starts (always at temperatures higher than 700 K under H2/Ar flow) there is a larger concentration of tetrahedral [WO4] species on alumina, than on niobia. Samples with low tungsten loading have been tested in isopropanol decomposition and ethylene oxidation, following both processes by FT-IR of adsorbed species up to 673 K. Results show that adsorption of ethylene on WO3/Nb2O5 yields acetaldehyde and acetate at 473 K, while this adsorption is non-reactive either on the supports or on WO3/Al2O3. Isopropanol adsorbs dissociatively on both supports, leading to acetone and propene formation on tungsta–niobia, but only propene on tungsta–alumina, probably due to the larger reducibility of the tungsten-containing phases.  相似文献   

5.
The activity and selectivity of rhenium promoted cobalt Fischer–Tropsch catalysts supported on Al2O3, TiO2 and SiO2 have been studied in a fixed-bed reactor at 483 K and 20 bar. Exposure of the catalysts to water added to the feed deactivates the Al2O3 supported catalyst, while the activity of the TiO2 and SiO2 supported catalysts increased. However, at high concentrations of water both the SiO2 and TiO2 supported catalyst deactivated. Common for all catalysts was an increase in C5+ selectivity and a decrease in the CH4 selectivity by increasing the water partial pressure. The catalysts have been characterized by scanning transmission electron microscope (STEM), BET, H2 chemisorption and X-ray diffraction (XRD).  相似文献   

6.
The hydrogenation of CO over mixed oxides (RhVO4, Rh2MnO4) supported on SiO2 has been studied after H2 reduction at 300°C and at 500°C, and the results compared with those of unpromoted Rh/SiO2 catalysts. Rh was more highly dispersed (40 Å) after the decomposition of RhVO4 by the H2 reduction than those of Rh2MnO4/SiO2 and unpromoted Rh/SiO2 catalysts. The activity and the selectivity to C2 oxygenates of the mixed-oxide catalysts after the H2 reduction were higher than those of the unpromoted Rh/SiO2 catalysts, but the activity of the RhVO4/SiO2 catalyst increased more dramatically after the decomposition by the H2 reduction at 300°C, and hence the yield of C2 oxygenates increased. These results suggest that a strong metal–oxide interaction (SMOI) was induced by the decomposition of the mixed oxides after the H2 reduction. The catalytic activity and selectivity were reproduced repeatedly by the calcination and reduction treatments of the spent (used) catalyst because of the regeneration of RhVO4 and redispersion of Rh metal.  相似文献   

7.
A SiO2/Nb2O5 mixed oxide was prepared by a sol–gel processing method based on TEOS and NbCl5 as precursors and HCl as catalysts. A material having a specific surface area of 703 m2 g−1, average pore diameter of 2.4 nm and 5 wt.% of Nb was obtained. An amperometric peroxidase-based biosensor for phenol was constructed by immobilizing the enzyme onto the SiO2/Nb2O5 sol–gel matrix by adsorption and cross-linking with glutaraldehyde and mixing with graphite powder to make a modified carbon paste. The biosensor performance for phenol detection, investigated in a flow injection system, was based on mediated electron transfer of horseradish peroxidase (HRP), avoiding the direct electron transfer of HRP, which was blocked by the sol–gel matrix. With optimized conditions, a linear response range from 5 to 25 μmol dm−3 for phenol was obtained with a sensitivity of 3.2 nA dm3 μmol−1. The detection limit of the biosensor for phenol was 0.5 μmol dm−3 and the analytical frequency was 27 samples h−1. The biosensor response was tested for various phenol substrates and the highest response was observed for 2-amino-4-chlorophenol. During 200 determinations, the biosensor kept the same response for phenol. The modified carbon paste retained its activity during 6 months of storage under refrigeration.  相似文献   

8.
Conversion of isobutane to methacrylonitrile via ammoxidation was studied using mixed catalysts composed of Bi---Mo-based composite oxides and various type of Nb2O2. The activity for ammoxidation of isobutane on Nb2O5 is fairly poor, and that the products were methacrolein without formation of methacylonitriIe. The activity of Bi---Mo-based composite oxides for the ammoxidation of isobutane was also fairly low and that the selectivity to methacylonitrile and methacrolein was 60–80%. The mixed catalyst composed of Bi---Mo-based composite oxides and amorphous Nb2O5 and that supported by γ-Al2O3 and SiO2 which have strong acid properties were improved their catalytic activity with keeping of their selectivity for ammoxidation of isobutane to methacrylonitrile.  相似文献   

9.
Nb2O5 loaded on the supports and mixed with oxides was studied to investigate the activity and acidity for Friedel-Crafts benzylation of anisole. From the study on the loaded catalysts, a preliminary conclusion for the selection of metal oxide was obtained; namely, such an acidic oxide as silica was suitable for the support of Nb2O5. Then, MoO3 and WO3 were mixed with Nb2O5, and prominent high catalytic activity and acidities were observed. Both oxides of Nb2O5-MoO3 and Nb2O5-WO3 showed almost similar behavior with respect to characterization and catalytic activity. Surface area increased, X-ray diffraction (XRD) and Raman bands were lost, acid sites, both Brønsted and Lewis characters generated, and surface acid site density was as high as 2–4 nm−2. The acid sites were generated on the amorphous metal oxides consisting of Nb and Mo or W oxides, different in nature from those of Nb2O5 calcined and un-calcined, and active for Friedel-Crafts benzylation.  相似文献   

10.
The effect of tin addition on niobia supported catalysts was studied and compared to the properties of alumina supported bimetallic Pt–Sn catalysts. The catalyst surfaces were probed by methylcyclopentane conversion, showing that both the presence of Sn and the reduction of the support caused a decrease in hydrogenolysis activity, favoring the ring enlargement reaction. The thermodynamics of reduction of these systems, evaluated by following the reduction step (temperature programmed reduction — TPR) with a differential scanning calorimeter (DSC), and irreversible H2 and CO uptakes, allowed to conclude that a Pt–Sn alloy is formed on niobia supported catalysts.  相似文献   

11.
Chunli Zhao  Israel E. Wachs   《Catalysis Today》2006,118(3-4):332-343
The vapor-phase selective oxidation of propylene (H2CCHCH3) to acrolein (H2CCHCHO) was investigated over supported V2O5/Nb2O5 catalysts. The catalysts were synthesized by incipient wetness impregnation of V-isopropoxide/isopropanol solutions and calcination at 450 °C. The catalytic active vanadia component was shown by in situ Raman spectroscopy to be 100% dispersed as surface VOx species on the Nb2O5 support in the sub-monolayer region (<8.4 V/nm2). Surface allyl species (H2CCHCH2*) were observed with in situ FT-IR to be the most abundant reaction intermediates. The acrolein formation kinetics and selectivity were strongly dependent on the surface VOx coverage. Two surface VOx sites were found to participate in the selective oxidation of propylene to acrolein. The reaction kinetics followed a Langmuir–Hinshelwood mechanism with first-order in propylene and half-order in O2 partial pressures. C3H6-TPSR spectroscopy studies also revealed that the lattice oxygen from the catalyst was not capable of selectively oxidizing propylene to acrolein and that the presence of gas phase molecular O2 was critical for maintaining the surface VOx species in the fully oxidized state. The catalytic active site for this selective oxidation reaction involves the bridging VONb support bond.  相似文献   

12.
The reduction of NOx by hydrogen under lean burn conditions over Pt/Al2O3 is strongly poisoned by carbon monoxide. This is due to the strong adsorption and subsequent high coverage of CO, which significantly increases the temperature required to initiate the reaction. Even relatively small concentrations of CO dramatically reduce the maximum NOx conversions achievable. In contrast, the presence of CO has a pronounced promoting influence in the case of Pd/Al2O3. In this case, although pure H2 and pure CO are ineffective for NOx reduction under lean burn conditions, H2/CO mixtures are very effective. With a realistic (1:3) H2:CO ratio, typical of actual exhaust gas, Pd/Al2O3 is significantly more active than Pt/Al2O3, delivering 45% NOx conversion at 160 °C, compared to >15% for Pt/Al2O3 under identical conditions. The nature of the support is also critically important, with Pd/Al2O3 being much more active than Pd/SiO2. Possible mechanisms for the improved performance of Pd/Al2O3 in the presence of H2+CO are discussed.  相似文献   

13.
The catalytic activity of Pt on alumina catalysts, with and without MnOx incorporated to the catalyst formulation, for CO oxidation in H2-free as well as in H2-rich stream (PROX) has been studied in the temperature range of 25–250 °C. The effect of catalyst preparation (by successive impregnation or by co-impregnation of Mn and Pt) and Mn content in the catalyst performance has been studied. A low Mn content (2 wt.%) has been found not to improve the catalyst activity compared to the base catalyst. However, catalysts prepared by successive impregnation with 8 and 15 wt.% Mn have shown a lower operation temperature for maximum CO conversion than the base catalyst with an enhanced catalyst activity at low temperatures with respect to Pt/Al2O3. A maximum CO conversion of 89.8%, with selectivity of 44.9% and CO yield of 40.3% could be reached over a catalyst with 15 wt.% Mn operating at 139 °C and λ = 2. The effect of the presence of 5 vol.% CO2 and 5 vol.% H2O in the feedstream on catalysts performance has also been studied and discussed. The presence of CO2 in the feedstream enhances the catalytic performance of all the studied catalysts at high temperature, whereas the presence of steam inhibits catalysts with higher MnOx content.  相似文献   

14.
The interactions NO—CO and O2—NO—CO have been studied onCuCo2O4γ-Al2O3 and on γ-Al2O3- and CuCo2O4γ-Al2O3-supported Pt, Rh and Pt—Rh catalysts. The deposition of noble metals (Pt, Rh and Pt—Rh) on CuCo2O4γ-Al2O3 instead of γ-Al2O3 is beneficial in: lowering the temperature at which maximum N2O is formed and decreasing the maximum N2O concentration attained; lowering the onset temperature of NO to N2 reduction, and increasing the N2 selectivity; preserving the activity towards NO to N2 reduction on a higher level following the concentration step NO + COO2+ NO + CO and changing the conditions from stoichiometric to oxidizing (50% excess of oxidants). The reason for this behaviour of the CuCo2O4γ-Al2O3-based noble metal catalysts is the formation (reversible) of a reduced surface layer on the CuCo2O4 supported spinel under the conditions of a stoichiometric NO + CO mixture.  相似文献   

15.
Mn effect and characterization on γ-Al2O3-, -Al2O3- and SiO2-supported Ru catalysts were investigated for Fischer–Tropsch synthesis under pressurized conditions. In the slurry phase Fischer–Tropsch reaction, γ-Al2O3 catalysts showed higher performance on CO conversion and C5+ selectivity than -Al2O3 and SiO2 catalysts. Moreover, Ru/Mn/γ-Al2O3 exhibited high resistance to catalyst deactivation and other catalysts were deactivated during the reaction. From characterization results on XRD, TPR, TEM, XPS and pore distribution, Ru particles were clearly observed over the catalysts, and γ-Al2O3 catalysts showed a moderate pore and particle size such as 8 nm, where -Al2O3 and SiO2 showed highly dispersed ruthenium particles. The addition of Mn to γ-Al2O3 enhanced the removal of chloride from RuCl3, which can lead to the formation of metallic Ru with moderate particle size, which would be an active site for Fischer–Tropsch reaction. Concomitantly, manganese chloride is formed. These schemes can be assigned to the stable nature of Ru/Mn/γ-Al2O3 catalyst.  相似文献   

16.
Pd/Nb2O5/Al2O3 catalysts were investigated on propane oxidation. Diffuse reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS) analysis suggested that monolayer coverage was attained between 10 and 20 wt.% of Nb2O5. Temperature programmed reduction (TPR) evidenced the partial reduction of niobium oxide. The maximum propane conversion observed on the Pd/10% Nb2O5/Al2O3 corresponded to the maximum Nb/Al surface ratio. The presence of NbOx polymeric structures near to the monolayer could favor the ideal Pd0/Pd2+ surface ratio to the propane oxidation which could explain the promoting effect of niobium oxide.  相似文献   

17.
A series of bifunctional Ni-H3PW12O40/SiO2 catalysts for the hydrocracking of n-decane were designed and prepared. The evaluation results of the catalysts show that Ni-H3PW12O40/SiO2 catalysts possess a high activity for hydrocracking of n-decane and an excellent tolerance to the sulfur and nitrogen compounds in the feedstock. Under the reaction conditions: reaction temperature 300 °C; H2/n-decane volume ratio of 1500; total pressure of 2 Mpa and the LHSV 2 h−1, the conversion of n-decane over reduced 5%Ni-50%H3PW12O40/SiO2 catalysts is as high as 90%, the C5+ selectivity equal to 70%. In order to reveal the structure and nature of the catalysts, a number of characterizations including XRD, Raman, H2-TPD, NH3-TPD, XPS and FT-IR of pyridine adsorption were carried out. The characteristic results show that the high activity of the catalysts and high C5+ selectivity can be related to the unique structure of the H3PW12O40 and its suitable acidity.  相似文献   

18.
Ammonium oxalate complex of niobium was investigated as an aqueous precursor for the preparation of x% Nb2O5/Al2O3 (x=5, 10, 20 and 30 wt.%) samples. Catalysts with the same Nb2O5 contents were also prepared from the traditional niobium oxalate/oxalic acid aqueous solution. The catalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), temperature-programmed reduction (TPR), infrared spectroscopy of chemisorbed pyridine and X-ray photoelectron spectroscopy (XPS). A comparison with the preparation method using the niobium oxalate salt was performed. The results showed that the niobium precursor influence the species growing leading to phases with different reducibility. The XPS revealed the presence of multilayers of niobium oxide on the Nb2O5/Al2O3 samples prepared by using niobium ammonium oxalate complex, while the ones obtained from niobium oxalate led to Nb2O5 particles islands. The addition of niobium oxide decreased the fraction of Lewis acid sites and increased the fraction of Brønsted acid sites, independent of the precursor salt. However, the creation of BAS was more pronounced on the Nb2O5/Al2O3 samples prepared from niobium oxalate.  相似文献   

19.
Catalytic performance for partial oxidation of methane (POM) to synthesis gas was studied over the Rh/Al2O3 catalysts with Rh loadings between 0.1 and 3 wt%. It was found that the ignition temperature of POM reaction increased with the decreasing of the Rh loadings in the catalysts. For the POM reaction over the catalysts with high (≥1 wt%) Rh loadings, steady-state reactivity was observed. For the reaction over the catalysts with low (≤0.25 wt%) Rh loadings, however, oscillations in CH4 and reaction products (CO, H2, and CO2) were observed. Comparative studies using H2-TPR, O2-TPD and high temperature in situ Raman spectroscopy techniques were carried out in order to elucidate the relation between the redox property of the Rh species in the Rh/Al2O3 with different Rh loadings and the performance of the catalysts for the reaction. Three kinds of oxidized rhodium species, i.e. the rhodium oxide species insignificantly affected by the support (RhOx), that intimately interacting with the Al2O3 surface (RhiOx) and the Rh(AlO2)y species formed by diffusion of rhodium oxides in to sublayers of Al2O3 [C.P. Hwang, C.T. Yeh, Q.M. Zhu, Catal. Today, 51 (1999) 93.], were identified by H2-TPR and O2-TPD experiments. Among them, the first two species can be easily reduced by H2 at temperature below 350 °C, while the last one can only be reduced by H2 at temperature above 500 °C. The ignition temperatures of POM reaction over the catalysts are closely related to the temperature at which most of the RhOx and RhiOx species can be reduced by CH4 in the reaction mixture. Compared to the Rh/Al2O3 with high Rh loadings, the catalysts with low Rh loadings contain more RhiOx species which possess stronger RhO bond strength and are more difficult to be reduced than RhOx by the reaction mixture. Higher temperature is therefore required to ignite the POM reaction over the catalysts with lower Rh loadings. The oscillation during the POM reaction over the Rh/Al2O3 with low Rh loadings can be related to the behaviour of Rh(AlO2)y species in the catalyst switching cyclically from the oxidized state to the reduced state during the reaction.  相似文献   

20.
The capability of flame-made Rh/Ce0.5Zr0.5O2 nanoparticles catalyzing the production of H2- and CO-rich syngas from butane was investigated for different Rh loadings (0–2.0 wt% Rh) and two different ceramic fibers (Al2O3/SiO2 and SiO2) as plugging material in a packed bed reactor for a temperature range from 225 to 750 °C. The main goal of this study was the efficient processing of butane at temperatures between 500 and 600 °C for a micro-intermediate-temperature SOFC system. Our results showed that Rh/Ce0.5Zr0.5O2 nanoparticles offer a very promising material for butane-to-syngas conversion with complete butane conversion and a hydrogen yield of 77% at 600 °C. The catalytic performance of packed beds strongly depended on the use of either Al2O3/SiO2 or SiO2 fiber plugs. This astonishing effect could be attributed to the interplay of homogeneous and heterogeneous chemical reactions during the high-temperatures within the reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号