首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用ASPEN-PLUS模拟乙醇.水体系分离过程,考察并流型、平流型,逆流型三种双效精馏流程.在相同的设计基础和要求下,从设备投资和节能效果两方面对三种双效精馏流程和单塔流程进行比较.结果显示,并流型双效精馏流程更具优势.  相似文献   

2.
以乙醇-水系统为研究物系,通过计算机稳态优化模拟计算,考察进料温度对3种不同结构的双效精馏流程节能率的影响。研究结果表明:在考察的温度范围内,进料温度对每一种流程的节能率均有不同程度的影响,但影响幅度均不是很大。具体的研究结果可为双效精馏流程的选择和进料温度的确定提供理论依据。  相似文献   

3.
4.
逆流双效精馏节能率的模拟研究   总被引:2,自引:0,他引:2  
以乙醇-水为物系,通过模拟计算,研究进料组成和进料温度对三种逆流双效精馏节能效果的影响.研究结果表明,逆流双效精馏B流程的节能效果最好,当进料中轻重组分的含量相当时,节能率高达49.83%.逆流双效精馏C流程的节能效果次之,逆流双效精馏A流程的节能效果最低,这两种流程最好应用在进料中轻组分含量大于重组分含量的条件下.三种逆流双效精馏流程的节能率均随着进料温度的升高而下降,因此逆流双效精馏最好应用在进料温度小于泡点温度的情况下.  相似文献   

5.
甲醇双效精馏节能技术   总被引:6,自引:1,他引:5  
廖卫昌 《中氮肥》2001,(1):20-22
0 引 言我公司原有两套年产1万t精甲醇生产装置,均为普通单塔(常压)精馏工艺流程,几经改造其年产量可达3万t精甲醇,但能耗仍然较高,吨甲醇消耗水蒸气约1.5t、冷却水约82t、电13kW·h。如何通过技术改造,减少甲醇精馏生产中水、电、汽的用量,达到节能降耗的目的,是一个值得讨论的问题。本文介绍一种节能技术——甲醇双效精馏工艺。1 甲醇双效精馏工艺的节能原理甲醇双效精馏是采用两个压力不同的精馏塔代替普通单塔(常压)进行精馏,即利用加压精馏塔(以下简称加压塔)塔顶的产品蒸汽作为低压主精馏塔(以下简称主塔)再沸器的热源的精馏工艺…  相似文献   

6.
进料组成对双效精馏节能效果的影响   总被引:7,自引:0,他引:7  
张鹏  高维平  王琨  栾国颜  陈丽 《化学工程》2006,34(11):68-70
以乙醇-水为物系,通过模拟计算,研究了进料组成对平流双效精馏、顺流双效精馏和逆流双效精馏节能效果的影响。结果表明,平流双效精馏和逆流双效精馏的节能率随进料中易挥发组分质量分数的增加而增大,节能率均在40%以上。而顺流双效HGL精馏节能率随进料中易挥发组分质量分数的增加而略有降低,节能率近50%。因此,当进料中轻、重组分质量分数差不多,或轻组分质量分数较多时,选用平流双效精馏和逆流双效精馏节能效果较好,当进料中重组分质量分数较多时,顺流双效精馏节能效果较好。  相似文献   

7.
双效变压精馏节能技术的应用   总被引:5,自引:0,他引:5  
顾晓  程建民 《上海化工》2001,26(7):17-19
以新开发设计的C-1305塔和C-1303塔联塔取代耗能大户DA-303塔,使C-1305塔顶热物为的汽化潜热在C-1303塔的再沸器中得到二次利用,从而形成双效变压精馏节能系统达到节能增效的目的。  相似文献   

8.
双效精馏流程的节能分析   总被引:6,自引:0,他引:6  
探讨几种基本的双效精馏装置的流程,并从能源利用的角度研究和分析它们的特点及适用条件。  相似文献   

9.
甲缩醛法制甲醛过程中,在精馏浓缩甲缩醛时,容易形成甲醇-甲缩醛共沸体系,不易得到高纯度的甲缩醛。通过研究分析可知甲醇-甲缩醛的共沸组成随压力的变化而变化,因此现有的很多工艺均采用变压精馏分离甲缩醛。其缺点是能耗高、效率低,能量的损失较大。为了进一步提高甲缩醛精馏塔的效率,在变压精馏的基础上运用双效精馏的方法来改进甲缩醛分离提纯工艺。模拟结果,甲缩醛精馏塔为:27块理论板,压力为1 000 kPa,双效精馏过程中塔底再沸器和塔顶冷凝器的节能率分别为54.97%和37.79%。  相似文献   

10.
精馏是化工生产中的重要操作单元,由于其能耗大,节能潜力高而备受关注。双效精馏是利用2个精馏塔的操作压力不同而设计的,通过重复利用给定数量的能量来提高精馏设备的热力效率。主要介绍了双效精馏的3种典型的工艺流程:顺流双效精馏、平流双效精馏、逆流双效精馏,并从能源利用方面分析它们的特点和适用条件。综述了近年的双效精馏的模拟优化成果以及其节能现状与发展趋势。  相似文献   

11.
12.
由于常见的双效精馏、顺流双效精馏、逆流双效精馏、平流双效精馏在泡点以上温度进料时,节能效果不是很理想,针对泡点以上温度进料,我们研究了新型节能流程--气体进料作再沸器热源双效精馏流程,以乙醇-水为实验物系,通过模拟计算,考察进料组成和进料温度对其节能率的影响.研究结果表明,当进料中轻组分含量大于0.4时,气体进料作再沸器热源双效精馏A流程的节能效果最好,节能率在36%以上.当进料中轻组分含量小于0.4时,气体进料作再沸器热源双效精馏B节能效果最好,节能率均在20%以上.当进料温度在露点附近或者高于250℃时这3种流程节能效果较好.  相似文献   

13.
张宏坤  左茂晟  李琳 《化学世界》2020,61(6):447-453
基于对废弃酯类合成润滑油的氧化变质成分分析,利用化工流程模拟软件(Aspen Plus)模拟出一种高效分离和回收酯类合成润滑油的工艺。逆流双效精馏分离回收工艺中,液相的非理想性计算采用热力学活度系数模型(NRTL);气相模型采用热力学状态方程(SRK)、蒸汽表状态方程(STEAMNBS),其中,热力学状态方程和蒸汽表状态方程二元相互作用参数由气液相平衡(VLE)数据回归。在变压逆流双效精馏模型中,通过合理调整撕裂流股并为其赋予初值,使循环物料计算收敛。优化分析常压塔(T_1)和加压塔(T_2)的理论塔板数、进料位置及常压塔(T_1)和加压塔(T_2)回流比对分离效果的影响。结果表明:将工艺参数设定为常压塔(T_1)理论塔板数7块,进料位置在第3块塔板,回流比9.8,塔顶温度221℃,全塔压力100kPa;加压塔(T_2)理论塔板数7块,进料位置在第1块塔板,回流进料板数为7块,回流比4.6,塔顶温度293℃,全塔压力150kPa,分离得到的润滑油癸二酸二异辛酯产品质量分数为99.101%,回收率99.587%;与单效精馏相比,逆流双效精馏工艺能耗较低,再沸器和冷凝器热负荷分别降低16.6%和14.5%。  相似文献   

14.
精馏过程节能技术的研究   总被引:2,自引:0,他引:2  
卢燕 《山东化工》1998,(3):8-10,13
提出了评价精馏过程的能耗的方法,并就精馏节能技术和节能的途径进行了探讨。  相似文献   

15.
氨肟化反应以叔丁醇为溶剂,溶解反应系统中的环己酮肟、氨、水等反应混合物,叔丁醇回收系统是氨肟化装置耗能最大的工序.双效精馏是精馏操作中一种较为高效的节能方式.本文简要介绍了氨肟化装置叔丁醇回收系统的双效精馏工艺改造情况,对改造前后的实际能源消耗做了详细的对比和评价分析.工艺改造中采用了双效精馏中的逆流流程,有效防止环己...  相似文献   

16.
张婷  魏顺安  申威峰 《化工进展》2019,38(z1):52-58
不同浓度的甲醇水溶液存在于诸多工业过程中,精馏分离甲醇和水时最主要考虑能耗问题。本文针对甲醇质量分数为10%~90%甲醇水溶液的分离过程,分别采用双塔顺流串联、双塔逆流串联和双塔并联的不同精馏模型,通过设计规定,以回流比和塔顶采出量为操纵变量,分别控制甲醇产品纯度大于99.85%(质量分数),以及废水甲醇含量小于10-5;以最小年度总费用(TAC)为优化目标,用灵敏度分析法优化塔板数及进料位置,并对比分析了各流程在最小TAC条件下的(火用)损失。结果表明,当原料甲醇质量分数在30%及以下时,TAC最小的是并联精馏;当原料甲醇浓度在50%及以上时,TAC最小的是逆流串联精馏。在各流程最小TAC情况下,原料甲醇质量分数在10%及以下时,有效能损失最小的是并联精馏;原料甲醇质量分数在30%及以上时,有效能损失最小的是逆流串联精馏。对于甲醇水溶液精馏分离的TAC和(火用)损失分析,可为工业中不同甲醇浓度下,甲醇水溶液的最佳双效精馏方案提供理论参考。  相似文献   

17.
针对平流双效精馏流程进行了具体研究,建立了最优化设计数学模型并编制了通用计算机程序,用实例对所建立的数学模型及优化设计方法和节能效果进行考核。提出了简捷优化法与逐板严格计算优化相结合的方法,克服了以往优化设计计算中仅求得局部最优解的弊端。  相似文献   

18.
本文利用计算机过程仿真模拟方法对现有的石油裂解产生C5馏分分离装置进行过程模拟分析。通过改变分离装置的压力条件可对分离装置中常规的三塔分离贯序进行改进,实现各精馏塔之间能量的多效与耦合利用,以达到节能降耗的目的。模拟结果表明改进后的分离装置较传统装置相比总能耗约降低39. 8%,在实际工业应用时具有较好的参考价值。  相似文献   

19.
20.
肖丰  高维平  杨家军 《辽宁化工》2006,35(3):154-156
针对顺流双效HGL精馏过程进行了具体研究,建立了最优化设计数学模型并编制了通用计算机程序,用实例对所建立的数学模型及优化设计方法和节能效果进行考核。提出了简捷优化法与逐板严格计算优化相结合的方法,克服了以往优化设计计算中仅求得局部最优解的弊端。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号