首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
利用低压化学气相淀积法(LPCVD)在表面有热氧化二氧化硅的(100)硅衬底上生长80nm厚多晶硅纳米膜,并对其界面进行表征.制作出单层Al金属的欧姆接触样品,在不同退火温度条件下对样片的电阻进行测量.结果表明,退火使欧姆接触的电阻率降低,接触电阻率可达到2.41×10-3Ω.cm2.  相似文献   

2.
通过离子注入外延层实现高浓度掺杂和直接采用高掺杂外延层两种方法分别制备了4H-SiC欧姆接触,对应退火条件分别为(950℃,Ar,30 min)和(1000℃,N2,2 min).采用传输线法测试得到的比接触电阻分别为1.359×10-5Ω.cm2和3.44×10-6Ω.cm2.二次离子质谱分析表明,高温退火过程中镍硅化合物和TiC的形成有利于欧姆接触特性.  相似文献   

3.
淀积合金薄膜的 Si 片退火时,通过固相反应在界面处生成接触过渡层,其组分与结构均不同于一般条件下生成的硅化物.本文介绍了 Pd 合金/Si接触过渡层的形成工艺,对接触过渡层的结构组分进行了分析与讨论.基于“相分层”效应,可用掺氮或掺氧的方法提高阻挡层的质量.  相似文献   

4.
采用LPCVD和PECVD方法制作单层金属铝的多晶硅纳米膜欧姆接触,并用X射线对其表征,说明铝膜具有多晶结构.在温度为450℃的条件下,分别对5 min、20 min和40 min的不同退火时间进行测试,得到在20 min时Ⅰ-Ⅴ特性曲线表现出好的欧姆接触,构成线性关系,方块电阻达1 kΩ,与接触电阻率相吻合,传输长度变到15 μm,接触电阻为30 Ω,说明电流的传导能力变强.  相似文献   

5.
在大电流密度下对欧姆接触结果进行考核,对传统的传输线法测量接触电阻率的结构与方法进行了改进,充分考虑到了半导体材料受到的影响,可达到只对接触区域老化而不破坏其他区域.工艺制备中实现台面刻蚀斜坡效果,并采取多次SiO_2淀积多次光刻技术,有效降低了引线电极断裂的概率.通过大电流密度老化结果显示:接触电阻率早期快速失效,且随电流密度及老化时间的增加而退化加剧.对样品老化前后进行能谱分析得知:接触层中的Al是一种较低的抗电迁移能力的金属,由于电迁移被冲击出来从而破坏了良好接触层.改进后的结构对测量大电流密度下的欧姆接触是一种好方法.  相似文献   

6.
在CdTe与金属背电极间形成稳定的低电阻接触,有助于提高CdTe太阳电池性能。采用硝酸-冰乙酸腐蚀CdTe薄膜并用真空蒸发法沉积铜背接触层,制备CdTe太阳电池。结果表明,化学腐蚀后在膜面生成了富碲层,硝酸-冰乙酸腐蚀为各向同性刻蚀。对背接触层进行优化退火处理,获得转化效率11.75%的CdTe太阳电池。  相似文献   

7.
为了获得n-GaN的低接触电阻的欧姆接触,采用Cr/Au/Ni/Au金属化系统与n—GaN形成欧姆接触,并对其不同温度下的接触电阻率进行了测试分析.室温下Cr/Au/Ni/Au的接触电阻率为0.32mΩ·m2。随着温度的升高,接触电阻率略有增加,在300℃时接触电阻率为0.65mΩ·cm2,因此此欧姆接触适合在高温下使用.  相似文献   

8.
通过力学计算和室内试验研究了层间接触条件对沥青路面高温性能的影响.应用BISAR计算了不同层间接触条件下的沥青面层剪应力,通过直剪试验测定了洒布不同粘层材料的复合马歇尔试件的抗剪强度,采用车辙试验测定复合式车辙板的DS和总变形量.研究结果表明:完全光滑的层间接触条件大幅提高了沥青面层的最大剪应力,并加速了沥青面层发生剪切破坏而出现车辙;粘层提高了层间抗剪强度,不同的粘层材料对层间接触条件的改善效果不同;高抗剪强度的层间接触能提高复合式车辙板的高温性能;采取适当措施改善层间接触条件,对提高沥青路面的高温性能具有重要意义.  相似文献   

9.
研究了高温工作环境下Ti/Al/Ni/Au(15 nm/220 nm/40 nm/50 nm)四层复合金属层与n-GaN(N_d= 3.7×10~(17)cm~(-3),N_d=3.0×10~(18)cm~(-3))的欧姆接触特性,试验结果标明,当测量温度低于300℃时,存储时间为0~24h,其接触电阻率基本不变,表现出良好的温度可靠性;分别经过300、500℃各24h高温存储后,其欧姆接触发生了较为明显的退化,且不可恢复.接触电阻率均随测量温度的增加而增大,掺杂浓度越高,其接触电阻率随测量温度的升高缓慢增加;重掺杂样品的n-GaN/Ti/Al/Ni/Au欧姆接触具有更高的高温可靠性。  相似文献   

10.
将碳纳米管有效地集成到微纳器件上实现组装是碳纳米管在众多领域得以应用的先决条件,组装后较高的接触电阻成为影响碳纳米管器件性能的重要因素,为了降低碳纳米管与电极之间的接触电阻,采用高温退火法对组装后的碳纳米管进行处理.首先,通过介电电泳法组装碳纳米管;其次,利用正交试验设计和方差分析研究高温退火过程中退火温度、保温时间和升温速率对降低碳纳米管接触电阻的影响,并获得了降低接触电阻的最优参数组合;最后,对退火前后碳纳米管的I-V特性进行测量、分析.结果表明:高温退火可以简单、高效地降低碳纳米管的接触电阻,退火温度是影响降阻效果的主要因素,退火处理后接触电阻的下降幅度最高可达91.59%,组装的碳纳米管退火前后的I-V特性曲线均呈现良好的线性.  相似文献   

11.
研究了齿轮动力传动过程中轮齿啮合状态的数值仿真方法-加载轮齿接触分析。通过分析齿轮传动的一般过程及其加载啮合条件,建立了一种适用于各类点接触齿轮、线接触齿轮的轮齿啮合状态分析的通用模式。由此可以求出齿轮动力传动过程中任一时刻参与啮合的轮齿数、齿面接触区的位置形状及接触压力分布、齿轮传动误差、轮齿载荷分配等。  相似文献   

12.
在分析半环面无级变速器工作原理的基础上,建立了接触压力的计算公式,以赫兹接触理论为指导,给出了接触应力的计算公式。以某公司的样机为实例,讨论了接接触应力的变化规律、影响因素。研究表明:在轴向力不变的情况下,接触压力和接触应力与接触点的位置有关,接触位置越靠近锥盘轴线,则接触压力和接触应力越大,接触椭圆的长轴越大,接触椭圆的短轴越小;接触应力随环面半径和环腔半径的增大而减小,随半锥角的增大而减小;接触应力对环腔半径的改变敏感度高,对环面半径和半锥角的改变敏感度低;将锥盘与滚轮设计为线接触,可大幅降低接触应力。本文的研究成果可为半环面型无级变速器设计提供理论参考。  相似文献   

13.
为分析转静子系统发生轴向碰摩时碰摩点的分布情况,建立了多盘转静子系统力学模型,综合考虑了盘在横向和纵向上的振动位移,应用弯曲变形理论确定了圆盘在两个方向上的转动角位移,基于平行四边形法则得到了圆盘的合成角位移,推导并给出了碰摩点分布及其轴向碰摩力的数学表达式。根据所推导的碰摩点轴向位移和轴向力公式,即可建立轴向碰摩时的振动微分方程。  相似文献   

14.
电连接结构的接触电阻(ECR,Electrical Contact Resistance)是评价电接触系统可靠性的重要指标。表带触指是环保气体GIS设备中重要的电连接部件,其ECR不仅影响回路总电阻,通流过大导体振动、安装不当等因素还会导致电接触不良,引发触指局部过热,引起绝缘放电等故障,直接关系到环保气体GIS设备的运行稳定性。为研究触指ECR产生机理和变化规律,本文采用MATLAB和激光共聚焦显微镜捕捉接触区域灰度图像,获得了触指接触区域的名义接触面积Aa和分形维数D,运用分形理论模型,数值计算了表带触指电连接结构的ECR,并通过ECR试验测量,验证了应用分形理论模型解析计算表带触指电连接结构ECR的合理性和准确性,研究了表带触指电接触过程中的弹性变形、第一弹塑性变形、第二弹塑性变形和塑性形变形四个阶段,对比分析了不同分形维数对触指电接触实际接触面积的影响规律。研究发现分形理论模型可用于GIS设备用表带触指的接触电阻理论计算,且得到触指电接触表面分形维数越大,触点变形越先进入弹塑性阶段,也越易进入第二弹塑性变形阶段,触指表面形貌越复杂,达到相同承载能力所需实际接触面积越小。研究成果有助于环保气体GIS电连接结构的优化设计,可为环保气体GIS设备触指电连接结构的多物理场计算和电接触性能的状态评估提供理论基础。  相似文献   

15.
精密测量中接触电阻的研究   总被引:1,自引:0,他引:1  
对接触电阻的产生及其对电测精度的影响进行了研究,通过实验,讨论了接触压力、探针几何形状对接触电阻的影响,以及如何减少其影响很大。  相似文献   

16.
三维接触压力分布的近似切平面拟合方法   总被引:2,自引:0,他引:2  
本文提出了用有限离散压力样本值的内在联系,分块构造接触压力分布拟合函数的新方法──近似幻平面拟合方法,该方法提高了压力样本值的利用率,并能以形式简单的拟合函数较好地反映出拟合单元上接触压力分布沿网格划分方向的变化趋势,获得较高的拟合精度。  相似文献   

17.
本文在分析鼓形齿轮联轴器设计、加工及传动方面诸问题的基础上,按共轭曲面原理建立了鼓形齿轮联轴器传动理论,推导了鼓形处齿接触线及齿面方程,运用电子计算机计算并分析了不同工作倾角下齿面接触状态的变化及规律,进一步使用笔者设计发明的按共轭原理滚动鼓形齿轮装置(专利申请号87101897)切制了按不同工作倾角设计的鼓形外齿并进行了接触试验,从而揭示了鼓形齿轮联轴器传动的实质,为优化设计、加工鼓形齿轮联轴器提供了条件  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号