首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two methods of solving the inverse heat conduction problem with employment of the discrete Fournier transform are presented in this article. The first one operates similarly to the SVD algorithm and consists in reducing the number of components of the discrete Fournier transform which are taken into account to determine the solution to the inverse problem. The second method is related to the regularization of the solution to the inverse problem in the discrete Fournier transform domain. Those methods were illustrated by numerical examples. In the first example, an influence of the boundary conditions disturbance by a random error on the solution to the inverse problem (its stability) was examined. In the second example, the temperature distribution on the inner boundary of the multiply connected domain was determined. Results of calculations made in both ways brought very good outcomes and confirm the usefulness of applying the discrete Fournier transform to solving inverse problems.  相似文献   

2.
An optimal m-vector descent iterative algorithm in a Krylov subspace is developed, of which the m weighting parameters are optimized from a properly defined objective function to accelerate the convergence rate in solving an ill-posed linear problem. The optimal multi-vector iterative algorithm (OMVIA) is convergent fast and accurate, which is verified by numerical tests of several linear inverse problems, including the backward heat conduction problem, the heat source identification problem, the inverse Cauchy problem, and the external force recovery problem. Because the OMVIA has a good filtering effect, the numerical results recovered are quite smooth with small error, even under a large noise up to 10%.  相似文献   

3.
A hybrid singularity superposition/boundary element-based inverse problem method for the reconstruction of multi-dimensional heat flux distributions is developed. Cauchy conditions are imposed at exposed surfaces that are readily reached for measurements while convective boundary conditions are unknown at surfaces that are not amenable to measurements such as the walls of the cooling holes. The purpose of the inverse analysis is to determine the heat flux distribution along cooling hole surfaces. This is accomplished in an iterative process by distributing a set of singularities (sinks) inside the physical boundaries of the cooling hole (usually along cooling hole centerline) with a given initial strength distribution. A forward steady-state heat conduction problem is solved using the boundary element method (BEM), and an objective function is defined to measure the difference between the heat flux measured at the exposed surfaces and the heat flux predicted by the BEM under the current strength distribution of the singularities. A Genetic Algorithm (GA) iteratively alters the strength distribution of the singularities until the measuring surfaces heat fluxes are matched, thus satisfying Cauchy conditions. The distribution of the heat flux at the walls of the cooling hole is determined in a post-processing stage after the inverse problem is solved. The advantage of this technique is to eliminate the need of meshing the surfaces of the cooling holes, which requires a large amount of effort to achieve a high quality mesh. Moreover, the use of singularity distributions significantly reduces the number of parameters sought in the inverse problem, which constitutes a tremendous advantage in solving the inverse problem, particularly in the application of film cooling holes.  相似文献   

4.
This paper aims to solve an inverse heat conduction problem in two-dimensional space under transient regime, which consists of the estimation of multiple time-dependent heat sources placed at the boundaries. Robin boundary condition (third type boundary condition) is considered at the working domain boundary. The simultaneous identification problem is formulated as a constrained minimization problem using the output least squares method with Tikhonov regularization. The properties of the continuous and discrete optimization problem are studied. Differentiability results and the adjoint problems are established. The numerical estimation is investigated using a modified conjugate gradient method. Furthermore, to verify the performance of the proposed algorithm, obtained results are compared with results obtained from the well-known finite-element software COMSOL Multiphysics under the same conditions. The numerical results show that the proposed algorithm is accurate, robust and capable of simultaneously representing the time effects on reconstructing the time-dependent Robin coefficient and heat flux.  相似文献   

5.
In this paper we propose a numerical algorithm based on the method of fundamental solutions for recovering a space-dependent heat source and the initial data simultaneously in an inverse heat conduction problem. The problem is transformed into a homogeneous backward-type inverse heat conduction problem and a Dirichlet boundary value problem for Poisson's equation. We use an improved method of fundamental solutions to solve the backward-type inverse heat conduction problem and apply the finite element method for solving the well-posed direct problem. The Tikhonov regularization method combined with the generalized cross validation rule for selecting a suitable regularization parameter is applied to obtain a stable regularized solution for the backward-type inverse heat conduction problem. Numerical experiments for four examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed algorithm.  相似文献   

6.
This article is concerned with a two-dimensional inverse steady-state heat conduction problem. The aim of this study is to estimate the thermal conductivity, the heat transfer coefficient, and the heat flux in irregular bodies (both separately and simultaneously) using a two-dimensional inverse analysis. The numerical procedure consists of an elliptic grid generation technique to generate a mesh over the irregular body and solve for the heat conduction equation. This article describes a novel sensitivity analysis scheme to compute the sensitivity of the temperatures to variation of the thermal conductivity, the heat transfer coefficient, and the heat flux. This sensitivity analysis scheme allows for the solution of inverse problem without requiring solution of adjoint equation even for a large number of unknown variables. The conjugate gradient method (CGM) is used to minimize the difference between the computed temperature on part of the boundary and the simulated measured temperature distribution. The obtained results reveal that the proposed algorithm is very accurate and efficient.  相似文献   

7.
An inverse heat conduction problem for nanoscale structures was studied. The conduction phenomenon is modelled using the Boltzmann transport equation. Phonon‐mediated heat conduction in one dimension is considered. One boundary, where temperature observation takes place, is subject to a known boundary condition and the other boundary is exposed to an unknown temperature. The gradient method is employed to solve the described inverse problem. The sensitivity, adjoint and gradient equations are derived. Sample results are presented and discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
This paper addresses the inverse heat conduction problem encountered in thermal manufacturing processes. A numerical control algorithm is developed for distributed parameter conduction systems, based on Galerkin optimization of an energy index employing Green's functions. Various temperature profiles of variable complexity are studied, using the proposed technique, in order to determine the surface heat input distribution necessary to generate the desired temperature field inside a solid body. Furthermore, the effect of altering the iterative time step and duration of processing time, on the convergence of the solution generated by the aforementioned method is investigated. It is proved that despite the variations in numerical processing, the iterative technique is able to solve the problem of inverse heat conduction in the thermal processing of materials. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
在特定边界条件下对热传导方程进行求解,优化所得温度分布方程的系数,并利用分段积分法对系数进行化简,建立了传热管道设备表面温度、材料特性与内壁状态3者间的关联模型,并将其应用在传热管道设备的内壁状态监测上。结合导热反问题,利用所建立的关联模型分析传热管道设备外表面的温度数据,得到内壁几何形状。通过仿真实验验证了该方法的可行性,从而为传热管道设备内壁状态的实时监测提供依据。  相似文献   

10.
An inverse analysis is used to simultaneously estimate the thermal conductivity and the boundary shape in steady-state heat conduction problems. The numerical scheme consists of a body-fitted grid generation technique to mesh the heat conducting body and solve the heat conduction equation – a novel, efficient, and easy to implement sensitivity analysis scheme to compute the sensitivity coefficients, and the conjugate gradient method as an optimization method to minimize the mismatch between the computed temperature distribution on some part of the body boundary and the measured temperatures. Using the proposed scheme, all sensitivity coefficients can be obtained in one solution of the direct heat conduction problem, irrespective of the large number of unknown parameters for the boundary shape. The obtained results reveal the accuracy, efficiency, and robustness of the proposed algorithm.  相似文献   

11.
This paper considers a transient heat conduction problem for an infinite medium with multiple non‐overlapping spherical cavities. Suddenly applied, steady Dirichlet‐, Neumann‐ or Robin‐type boundary conditions are assumed. The approach is based on the use of the general solution to the problem of a single cavity and superposition. Application of the Laplace transform and the so‐called addition theorem results in a semi‐analytical transformed solution for the case of multiple cavities. The solution in the time domain is obtained by performing a numerical inversion of the Laplace transform. A large‐time asymptotic series for the temperature is obtained. The limiting case of infinitely large time results in the solution for the corresponding steady‐state problem. Several numerical examples that demonstrate the accuracy and the efficiency of the method are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
This paper applies the boundary face method (BFM) to solve transient heat conduction problems for the first time. Rather than using a transformation scheme, a direct solution of the boundary integral equation (BIE) with time domain fundamental solution is performed in this application. To avoid the domain integrals, the boundary integral equation is solved by the time stepping convolution method. For problems on structures that contain a large number of open-ended tubular shaped cavities in small diameters, a curvilinear tube element is employed to approximate the variables on the cavity surface. Furthermore, to perform integration and boundary variable approximation on the end faces that are intersected by the tubular cavity, a triangular element with negative part is adopted. With the two types of specified elements, the BFM is implemented to solve transient heat conduction problems on structures with open-ended tubular shaped cavities of small size which are usually inconvenience in finite element implementations. Three numerical examples on different structures are presented to illustrate the validity and efficiency of the method.  相似文献   

13.
In this paper, the alternating iterative algorithm originally proposed by Kozlov, Maz'ya and Fomin (1991) is numerically implemented for the Cauchy problem in anisotropic heat conduction using a meshless method. Every iteration of the numerical procedure consists of two mixed, well-posed and direct problems which are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is chosen according to the generalized cross-validation (GCV) criterion. An efficient regularizing stopping criterion which ceases the iterative procedure at the point where the accumulation of noise becomes dominant and the errors in predicting the exact solutions increase, is also presented. The iterative MFS algorithm is tested for Cauchy problems related to heat conduction in two-dimensional anisotropic solids to confirm the numerical convergence, stability and accuracy of the method.  相似文献   

14.
基于区间有限元和矩阵摄动理论, 引入同伦技术, 建立了瞬态热传导不确定性区间参数反演识别的数值求解模式。利用测量信息和计算信息的区间残差构造同伦函数, 将反演识别问题转化为一个优化问题进行求解。时间域上, 引入时域精细算法进行离散, 空间上, 采用八节点等参元技术进行离散, 并结合区间有限元法, 建立了便于敏度分析的不确定性正反演数值模型。该模型不仅考虑了非均质和参数分布的影响, 而且也便于正演和反演问题的敏度分析, 可对导热系数和热边界条件等宗量的区间范围进行有效的单一和组合识别, 并给出了相关的数值算例。数值结果表明了所建数值模型的有效性和可行性, 并具有较高的计算精度。  相似文献   

15.
An inverse elasticity problem is solved to identify the irregular boundary between the components of a multiple connected domain using displacement measurements obtained from an uniaxial tension test. The boundary elements method (BEM) coupled with the particle swarm optimization (PSO) and conjugate gradient method (CGM) are employed. Due to the ill-posed nature of this inverse elasticity problem, and the need for an initial guess of the unknown interfacial boundary when local optimization methods are implemented, a Meta heuristic procedure based on the PSO algorithm is presented. The CGM is then employed using the best initial guess obtained by the PSO to reach convergence. This procedure is highly effective, since the computational time reduces considerably and accuracy of the results is reasonable. Several example problems are solved and the accuracy of obtained results is discussed. The influence of material properties and the effect of measurement errors on the estimation process are also addressed.  相似文献   

16.
A new method to solve the problem of transient heat conduction in cylindrical bodies is presented. This method allows transient temperature and thermal stress distribution to be determined from interior temperature histories. The thermal stresses at the inner surface can be estimated by a temperature sensor placed only at the outer surface. The problem of inverse heat conduction was solved using the least squares method with the following stabilizing techniques: smoothing of the temperature-time curves, regularization of the inverse algorithm, future time steps. Two examples are shown to demonstrate the influence of the number of temperature sensors on the accuracy of the calculation. In a third example, the developed method is used to calculate the temperature coefficient and thermal stresses at the inner surface of a thick-walled cylinder using temperature histories from three locations on the outer surface.  相似文献   

17.
A novel meshless numerical procedure based on the method of fundamental solutions (MFS) and the heat polynomials is proposed for recovering a time-dependent heat source and the boundary data simultaneously in an inverse heat conduction problem (IHCP). We will transform the problem into a homogeneous IHCP and initial value problems for the first-order ordinary differential equation. An improved method of MFS is used to solve the IHCP and a finite difference method is applied for solving the initial value problems. The advantage of applying the proposed meshless numerical scheme is producing the shape functions which provide the important delta function property to ensure that the essential conditions are fulfilled. Numerical experiments for some examples are provided to show the effectiveness of the proposed algorithm.  相似文献   

18.
A domain-extension method for quantitative detection of irregular-shape cavities inside irregular-shape bodies is presented. An auxiliary problem is introduced in the solution of the cavities. In the auxiliary problem, the original body domain at the cavity side is extended so that the original cavity walls become interior points. The position of the cavities can then be found by solving the temperature field in the extended domain and matching the temperatures and heat fluxes at the interior points to the conditions imposed on the cavities. A boundary-element method is used for the solution of the auxiliary problem, and by means of four examples, the accuracy of the domain extension method is established. The paper provides the details for the numerical solution of the cavities. Limitation of the method in the detection of multiple cavities is also explored. The domain-extension method has shown to be highly effective in quantitative detection of cavities in single-cavity bodies.  相似文献   

19.
In this paper, we propose an alternating iterative algorithm to solve a singular Cauchy problem for the anisotropic heat conduction equation. The numerical algorithm is based on the boundary element method (BEM), modified to take into account the form of the singularity, without substantially increasing the amount of computation involved. Two test examples, the first with a singularity caused by an abrupt change in the boundary conditions and the second with a singularity caused by a sharp re-entrant corner, are investigated. The numerical results obtained confirm that provided an appropriate stopping regularization criterion is imposed, the iterative BEM is efficient in dealing with the difficulties arising from both the instabilities produced by the boundary condition formulation and the slow rate of convergence of standard numerical methods around the singular point.  相似文献   

20.
A novel, simple iterative algorithm is used to calculate the temperature distribution in a finite medium for the case of non-Fourier (hyperbolic) heat conduction. In this algorithm the temperature is calculated explicitly in one simple calculation that is repeated for each time step as the heat wave propagates through the medium with constant speed. When the wave reaches a boundary of the medium, it bounces back and moves in the opposite direction. All simple initial and boundary conditions can be modelled. An example of using the algorithm for the case of a finite, thermally insulated medium is given, and the results are compared with an exact analytical solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号