首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

We report a nonlinear-mirror mode-locked diode-pumped solid-state Nd:GYSGG laser operating at 1061?nm. The nonlinear mirror comprises a periodically poled LiNbO3(PPLN) crystal and a dichroic mirror. Continuous-wave mode-locked laser with an output power of 450?mw is obtained under a diode pump power of 5.5?W at 808?nm. The repetition rate of the mode-locked laser is 97.1?MHz and the bandwidth of spectral is 1.3?nm. Considering the group velocity mismatch (GVM) of PPLN, we estimate the minimum pulse width is about 9?ps.  相似文献   

2.
A diode-pumped doubly Q-switched and mode-locked (QML) YVO4/NdYVO4 laser is realized with the electro-optic (EO) modulator and Cr4+:YAG saturable absorber, in which the repetition rate of the Q-switched envelope is controlled by the active EO modulation while the mode-locked pulses inside the Q-switched envelope depend on both the actively modulated loss and the passive saturable absorption. The experimental results show that the doubly QML laser can generate more stable and shorter pulses with higher peak power when compared with the singly passively QML laser with Cr4+:YAG. At the pump power of 20 W and the repetition rate 1 kHz, a 21 ns Q-switched pulse envelope with a average mode-locked peak power of 544 kW is obtained, which is the shortest Q-switched pulse envelope to my knowledge. In comparison to the singly passively QML laser with Cr4+:YAG, the doubly QML laser has compressed the Q-switched envelope pulse width 70% and improved the mode-locked pulsed peak power 27 times. By using a hyperbolic secant square function and considering the Gaussian distribution of the intracavity photon density, the coupled equations for diode-pumped dual-loss-modulated QML laser is given and the numerical solutions of the equations are in good agreement with the experimental results.  相似文献   

3.
Europium-doped YVO4 phosphors have been synthesized using microwave radiation of 700 W power. The uniformity and high rate of microwave heating, as well as “nonthermal” effects of microwave radiation, considerably accelerate the decomposition of precursors and YVO4:Eu3+ synthesis. The europium concentration was varied from 1 to 8 at %. The luminescence intensity of YVO4:Eu3+ was shown to depend on Eu3+ concentration, with a maximum at 8 at % Eu3+. According to transmission electron microscopy data, the synthesized phosphors consist of nanoparticles 6 to 8 nm in size, with an appreciable degree of agglomeration.  相似文献   

4.
《Optical Materials》2005,27(3):481-486
A laser-diode pumped passively Q-switched new type crystal Nd3+:NaY(WO4)2 (known as Nd:NYW) laser with Cr4+:YAG saturable absorber has been realized. The dependence of pulse repetition rate, pulse energy, pulse width, and peak power on pump power for different small-signal transmission of Cr4+:YAG are measured. The coupled rate equations are used to simulate the Q-switched process of laser, and the numerical solutions agree with the experimental results.  相似文献   

5.
The novel Ca4?x(PO4)2O: xDy3+ and Ca4?x?y(PO4)2O: xDy3+, yEu2+ multi-color phosphors were synthesized by traditional solid-state reaction. The crystal structure, particle morphology, photoluminescence properties and energy transfer process were investigated in detail. The X-ray diffraction (XRD) results demonstrate that the products showed pure monoclinic phase of Ca4(PO4)2O when x < 0.1. The scanning electron microscopy (SEM) indicated that the phosphors were grain-like morphologies with diameters of ~ 3.7–7.0 μm. Under excitation of 345 nm, Dy3+-doped Ca4(PO4)2O phosphors showed multi-color emission bands at 410, 481 and 580 nm originated from oxygen vacancies and Dy3+. Interestingly, Ca4(PO4)2O: Dy3+, Eu2+ phosphors exhibited blue emission band at 481 nm and broad emission band from 530 to 670 nm covering green to red regions. The energy transfer process from Dy3+ to Eu2+ was observed for the co-doped samples, and the energy transfer efficiency reached to 60% when Eu2+ molar concentration was 8%. In particular, warm/cool/day white light with adjustable CCT (2800–6700 K) and high CRI (Ra > 85) can be obtained by changing the Eu2+ co-doping contents in Ca4(PO4)2O: Dy3+, Eu2+ phosphors. The optimized Ca3.952(PO4)2O: 0.04Dy3+, 0.008Eu2+ phosphor can achieve the typical white light with CCT of 4735 K and CRI of 87.  相似文献   

6.
S Chen  Y Zhao  Z Yu  Z Fang  D Li  H He  J Shao 《Applied optics》2012,51(25):6188-6195
Laser-induced damage of the "standard" (λ/4 stack structure) and "modified" (reduced standing-wave field) HfO2/SiO2 mirrors were investigated by a commercial 800?nm Ti:sapphire laser system. Three kinds of pulse duration of 50?fs, 105?fs, and 135?fs were chosen. The results show that the single-shot damage threshold of the "modified" mirror was about 14%-23% higher compared to that of the "standard" mirror. A model based on the rate equation for free electron generation was adopted to explain the threshold results. It took in account the transient changes in the dielectric function of material during the laser pulse. The simulated threshold agreed with the experimental very well. Besides, for two kinds of mirror, typical breakdown craters for both the single-shots and multi-shots damage tests reveal striking distinct characteristics. Interestingly, the multi-shots damage crater with zigzag-like edge was observed only on the "standard" mirror. These phenomena were illustrated reasonably by the distribution features of the electric field intensity within the mirrors.  相似文献   

7.
YJ Ma  F Lu  XB Ming  M Chen  XH Liu  JJ Yin 《Applied optics》2012,51(23):5657-5663
We report the lattice damage and annealing properties of the 500?keV Si+ ions implanted Nd:YVO4 crystal with different doses. The Rutherford backscattering spectrometry/channeling technique was used to analyze the damage profiles of ion-implanted samples. A series of post-implant annealing was performed at temperatures from 250?°C to 400?°C to investigate the relation between lattice damage profile and the waveguide formation. Implantations at doses of more than 5×1014 ions/cm2 can result in high damage ratio in the near-surface region and the lattice structure cannot be restored even after annealing at 400?°C. Such seriously damaged lattice is relatively stable and contributes to the waveguide structure. Convergence of the refractive index at the surface region after ion implantation is believed mainly due to the elastic collisions with the target atoms caused by nuclear energy loss.  相似文献   

8.
Sm3+-activated NaSrPO4 phosphors could be efficiently excited at 403 nm, and exhibited a bright red emission mainly including four wavelength peaks of 565, 600, 646 and 710 nm. The highest emission intensity was found for NaSr 1?x PO4: xSm3+ with a composition of x = 0.007. Concentration quenching was observed as the composition of x exceeds 0.007. The decay time values of NaSr1?x PO 4 : xSm3+ phosphors range from around 2.55 to 3.49 ms. NaSr1?x PO4: xSm3+ phosphor shows a higher thermally stable luminescence and its thermal quenching temperature T 50 was found to be 350°C, which is higher than that of commercial YAG:Ce3+ phosphor and ZnS:(Al, Ag) phosphor. Because NaSr1?x PO4: xSm3+ phosphor features a high colour-rendering index and chemical stability, it is potentially useful as a new scintillation material for white light-emitting diodes.  相似文献   

9.
Novel LiBaPO4:Bi3+ yellow-emitting phosphor is synthesized by high temperature solid-state reaction method in air. With excitation 260 nm, LiBaPO4:Bi3+ phosphor emits yellow light with the chromaticity coordinate (0.4272, 0.4657) and color rendering index 77.7. Emission band peaking at ~?588 nm of LiBaPO4:Bi3+ phosphor in the range of 400–790 nm is attributed to the 3P11S0 electron transition of Bi3+ ion. Excitation band monitored at 588 nm in the range of 220–300 nm is assigned to the 1S03P1 electron transition of Bi3+ ion. The optimal Bi3+ ion concentration in LiBaPO4:Bi3+ phosphor is ~?1.0 mol%. Time resolved spectra and fluorescence lifetime data confirm that there is only Bi3+ ion luminous center in LiBaPO4:Bi3+ phosphor. The luminous mechanism is analyzed by configurational coordinate diagram of Bi3+ ion. The experiment results are helpful to develop other new Bi3+-doped optical materials for solid-state lighting.  相似文献   

10.
NaLa(WO4)2:Eu3+ phosphors with different Eu3+ concentrations have been synthesized by a hydrothermal method. The phase is confirmed by XRD analysis, which shows a pure-phase NaLa(WO4)2 XRD pattern for all of NaLa(WO4)2:Eu3+ phosphors. The SEM and TEM images indicate that all of NaLa(WO4)2:Eu3+ phosphors have a octahedral morphology. These suggest that the Eu3+ doping has no influence on the structure and growth of NaLa(WO4)4 particles. By monitoring the emission of Eu3+ at 615 nm, NaLa(WO4)2:Eu3+ phosphors show excitation bands originating from both host and Eu3+ ions. Under the excitation at 271 nm corresponding to WO4 2? groups, emission bands coming from the 1A1 → 3T1 transition with the WO4 2? groups and the 5D0 → 7Fj (j = 0, 1, 2, 3 and 4) transitions of Eu3+ are observed. The emission intensity relating to WO4 2? groups decreases with increasing Eu3+ concentration. But emission intensities of Eu3+ increase firstly and then decreases because of concentration quenching effect. Under the excitation at 395 nm corresponding to 7F0 → 5L6 transition of Eu3+, only characteristic Eu3+ emission bands can be observed. The results of this work suggest that tunable luminescence can be obtained for Eu3+ doped NaLa(WO4)2 phosphors by changing Eu3+ concentration and excitation wavelength.  相似文献   

11.
A series of Pr3+, Gd3+ and Pr3+–Gd3+-doped inorganic borate phosphors LiSr4(BO3)3 were successfully synthesized by a modified solid-state diffusion method. The crystal structures and the phase purities of samples were characterized by powder X-ray diffraction. Surface morphology of the sample was studied by scanning electronic microscopy (SEM). The optimal concentrations of dopant Gd3+ ions in compound LiSr4(BO3)3 were determined through the measurements of photoluminescence (PL) spectra of phosphors. Gd3+-doped phosphors LiSr4(BO3)3 show strong band absorption in UV spectral region and narrow-band UVB emission under the excitation of 276 nm was only due to 6P J 8S7/2 transition of Gd3+ ions. The effect of Pr3+ ion on excitation of LiSr4(BO3)3:Gd3+ was also studied. The excitation of LiSr4(BO3)3:Gd3+, Pr3+ gives a broad-band spectra, which show very good overlap with the Hg 253.7 nm line. The photoluminescence spectra of LiSr4(BO3)3 with different doping concentrations Pr3+ and keeping the concentration of Gd3+ constant at 0.03 mol have also been studied. The emission intensity of LiSr4(BO3)3:Pr3+–Gd3+ phosphors increases with increasing Pr3+ doping concentration and reaches a maximum at 0.01 mol. From the photoluminescence study of LiSr4(BO3)3:Gd3+, Pr3+ we conclude that there was efficient energy transfer from Pr3+→ Gd3+ ions in LiSr4?x?y Pr x Gd y (BO3)3 phosphors.  相似文献   

12.
The crystal characteristics of a disordered Nd:LiLa(MoO4)2 laser crystal were investigated in detail, including its structure, absorption, emission and Raman scattering spectra. Laser operation, end-pumped by an 808?nm diode laser, has been demonstrated in both a concave-plano and plane-parallel resonator cavity. A broad-spectral dual-peak laser emission at 1061?nm and 1060?nm with a full width at half maximum of 2?nm was obtained in the experiment. A maximum output power of 267?mW was obtained in the concave-plano cavity. However, in the plane-parallel cavity, laser output of 381?mW was obtained, giving a slope efficiency of 14.5%. The results lay the groundwork for Raman, mode-locked and tunable laser applications generated by a Nd:LiLa(MoO4)2 laser crystal.  相似文献   

13.
Novel green-emitting piezoelectric ceramics of SrBi4?x Er x Ti4O15 (SBT-xEr) were prepared. Strong up-conversion with bright green (524 and 548 nm) and a relatively weak red (660 nm) emission bands were obtained under 980 nm excitation at room temperature, which is attributed to the intra 4f–4f electronic transition of (2H11/2, 4S3/2)–4I15/2 and the transition from 4F9/2 to 4I15/2 of Er3+ ions, respectively. Simultaneously, Er3+ doping promotes the electrical properties. At 0.8 mol%Er, the optimal electric properties with high Curie temperature of T c?~527?°C, large remanent polarization of 2P r?~14.92 μC/cm2 and piezoelectric constant of d 33?~17 pC/N was achieved. As a multifunctional material, Er3+ doped SBT showed a great potential to be used in 3D-display, bio-imaging, solid state laser and optical temperature sensor.  相似文献   

14.
A series of Sr3Gd1?xLi(PO4)3F: xSm3+ (x?=?0.02, 0.04, 0.06, 0.08) phosphors were synthesized by a high-temperature solid state method. The Sm3+ activated Sr3GdLi(PO4)3F phosphors can be efficiently excited by the wavelengths in the range from 350 to 450 nm, which matches perfectly with that of the commercial near-UV LED chips. The optimal doping concentration of Sr3Gd1?xLi(PO4)3F: xSm3+ phosphors was determined to be x?=?0.04, corresponding to the quantum efficiency of 2.23%, and the CIE chromaticity coordinates (x?=?0.5172, y?=?0.4641). The concentration quenching mechanism of Sm3+ in Sr3GdLi(PO4)3F host is mainly attributed to the dipole–dipole interaction, which was confirmed by the fluorescent lifetimes. The effect of temperature on the photoluminescence property of Sr3GdLi(PO4)3F: Sm3+ was investigated. 90% of the intensity is preserved at 150 °C. In addition, a white light emitting diode (WLED) lamp was fabricated by a 405 nm n-UV LED chip coated with Sr3Gd0.96Li(PO4)3F:0.04Sm3+ phosphor and commercial yellow phosphor (YAG: Ce3+) of a certain mass ratio. The present work indicates that the Sr3GdLi(PO4)3F: Sm3+ orange–red-emitting phosphors tend to be potential application in n-UV WLED.  相似文献   

15.
The SrLa2?xO4:xEu3+ phosphors are synthesized through high-temperature solid-state reaction method at 1473 K with various doping concentration. Their phase structures, absorption spectra, and luminescence properties are investigated by X-ray diffraction (XRD), UV–Vis spectrophotometer and photoluminescence spectrometry. The intense absorption of SrLa2?xO4:xEu3+ phosphors have occurred around 400 nm. The prominent luminescence spectra of the prepared phosphors exhibited bright red emission at 626 nm. The doping concentration 0.12 mol% of Eu3+ is shown to be optimal for prominent red emission and chromaticity coordinates are x?=?0.692, y?=?0.3072. Considering the high colour purity and appropriate emission intensity of Eu3+ doped SrLa2O4 can be used as red phosphors for white light emitting diodes (WLEDs).  相似文献   

16.
A series of polycrystalline Na4Ca4(Si6O18):Eu3+ orange emitting phosphors were synthesized by a conventional high-temperature solid-state reaction. The phase formation was confirmed by X-ray power diffraction analysis. The excitation spectra show a strong host absorption indicating an efficient energy transfer process from O2? to Eu3+ ions. Upon NUV radiation, the phosphors showed strong red emission around 610 nm (5D0 → 7F2) and orange emission around 591 nm (5D0 → 7F1), but the 5D1,2,3 emission nearly can not be seen. Compared with the luminescence properties of Li+, Na+, and K+ co-doped samples, we deduced that Na+ ions probably prefer to dope into the intrinsic Na vacancies rather than Ca2+ ions vacancies in Na4Ca4(Si6O18) crystal. Thermal stability properties, quantum efficiency and chromaticity coordinates of the phosphors have been investigated for the potential application in white LEDs.  相似文献   

17.
Zn2GeO4, Zn2GeO4:Mn2+, Zn2GeO4:Pr3+ and Zn2GeO4:Mn2+/Pr3+ phosphors were fabricated by a solid state reaction. The phase and luminescent properties of the fabricated phosphors were investigated. The XRD patterns show that all of the fabricated phosphors have an orthorhombic structure. The fabricated Zn2GeO4 shows an emission band in the range of 350–550 nm. The fabricated Zn2GeO4:Mn2+ and Zn2GeO4:Pr3+ phosphors show emission bands corresponding to Mn2+ and Pr3+ ions, respectively. The fabricated Zn2GeO4:Mn2+/Pr3+ phosphor shows the emission band results from Mn2+ and the codoped Pr3+ enhances the emission intensity of Mn2+. Moreover, Zn2GeO4:Mn2+/Pr3+ phosphor exhibits longer decay time than that of Zn2GeO4:Mn2+. The higher intensity and longer lifetime of Mn2+ emission are induced by the energy transfer from Pr3+ of various vacancies to Mn2+ in Zn2GeO4:Mn2+/Pr3+ phosphors.  相似文献   

18.
Emission spectral results of Pr3+ & Ho3+ ions doped Ca4GdO(BO3)3 powder phosphors are reported here. XRD, SEM and FTIR measurements have been carried out for them. The emission spectrum of Pr3+: Ca4GdO(BO3)3 has shown an emission transition 1D23H4 at 606 nm with λexci = 480 nm (3H43P0) and Ho3+: Ca4GdO(BO3)3 phosphor has shown an emission transition 5S25I8 at 549 nm with λexci = 447 nm (5I85F1). Emission performances of these two phosphors have been explained in terms of energy level diagrams.  相似文献   

19.
This paper reports the comparison of photoluminescence and afterglow behavior of Dy3+ in CaSnO3 and Ca2SnO4 phosphors. The samples containing CaSnO3 and Ca2SnO4 were prepared via solid-state reaction. The properties have been characterized and analyzed by utilizing X-ray diffraction (XRD), photoluminescence spectroscope (PLS), X-ray photoelectron spectroscopy (XPS), afterglow spectroscopy (AS) and thermal luminescence spectroscope (TLS). The emission spectra revealed that CaSnO3:Dy3+ and Ca2SnO4:Dy3+ phosphors showed different photoluminescence. The Ca2SnO4:Dy3+ phosphor showed a typical 4F9/2 to 6Hj energy transition of Dy3+ ions, with three significant emissions centering around 482, 572 and 670 nm. However, the CaSnO3:Dy3+ phosphor revealed a broad T1 → S0 transitions of Sn2+ ions. The XPS demonstrate the existence of Sn2+ ions in CaSnO3 phosphor caused by the doping of Dy3+ ions. Both the CaSnO3:Dy3+ and Ca2SnO4:Dy3+ phosphors showed a typical triple-exponential afterglow when the UV source switched off. Thermal simulated luminescence study indicated that the persistent afterglow of CaSnO3:Dy3+ and Ca2SnO4:Dy3+ phosphors was generated by the suitable electron or hole traps which were resulted from the doping the calcium stannate host with rare-earth ions (Dy3+).  相似文献   

20.
In this paper, the output performances at 1.34 μm in continuous wave operation and passive Q-switching regime of a diode-end-pumped Nd:Gd0.5Y0.5VO4 laser have been investigated. The passive Q-switching regime was achieved with Co2+:LaMgAl11O19 (Co2+:LMA) saturable absorbers crystals. A maximum average output power of 230 mW was recorded with a Co2+:LMA with initial transmission of 81%. The minimum pulse duration was 116 ns, which corresponded to a repetition rate of 360 kHz, the single pulse energy of 2.1 μJ and the pulse peak power of 5.5 W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号