首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
高钦泉  赵岩  李根  童同 《计算机应用》2019,39(10):2802-2808
针对目前用于超分辨率图像重建的深度学习网络模型结构深且计算复杂度高,以及存储网络模型所需空间大,进而导致其无法在资源受限的设备上有效运行的问题,提出一种基于知识蒸馏的超分辨率卷积神经网络的压缩方法。该方法使用一个参数多、重建效果好的教师网络和一个参数少、重建效果较差的学生网络。首先训练好教师网络,然后使用知识蒸馏的方法将知识从教师网络转移到学生网络,最后在不改变学生网络的网络结构及参数量的前提下提升学生网络的重建效果。实验使用峰值信噪比(PSNR)评估重建质量的结果,使用知识蒸馏方法的学生网络与不使用知识蒸馏方法的学生网络相比,在放大倍数为3时,在4个公开测试集上的PSNR提升量分别为0.53 dB、0.37 dB、0.24 dB和0.45 dB。在不改变学生网络结构的前提下,所提方法显著地改善了学生网络的超分辨率重建效果。  相似文献   

2.
卷积神经网络压缩中的知识蒸馏技术综述   总被引:1,自引:0,他引:1  
近年来,卷积神经网络(CNN)凭借强大的特征提取和表达能力,在图像分析领域的诸多应用中取得了令人瞩目的成就.但是,CNN性能的不断提升几乎完全得益于网络模型的越来越深和越来越大,在这个情况下,部署完整的CNN往往需要巨大的内存开销和高性能的计算单元(如GPU)支撑,而在计算资源受限的嵌入式设备以及高实时要求的移动终端上...  相似文献   

3.
随着人工智能应用的实时性、隐私性和安全性需求增大,在边缘计算平台上部署高性能的神经网络成为研究热点。由于常见的边缘计算平台在存储、算力、功耗上均存在限制,因此深度神经网络的端侧部署仍然是一个巨大的挑战。目前,克服上述挑战的一个思路是对现有的神经网络压缩以适配设备部署条件。现阶段常用的模型压缩算法有剪枝、量化、知识蒸馏,多种方法优势互补同时联合压缩可实现更好的压缩加速效果,正成为研究的热点。本文首先对常用的模型压缩算法进行简要概述,然后总结了“知识蒸馏+剪枝”、“知识蒸馏+量化”和“剪枝+量化”3种常见的联合压缩算法,重点分析论述了联合压缩的基本思想和方法,最后提出了神经网络压缩联合优化方法未来的重点发展方向。  相似文献   

4.
目前存储和计算成本严重阻碍深度神经网络应用和推广,而神经网络量化是一种有效的压缩方法.神经网络低比特量化存在的显著困难是量化比特数越低,网络分类精度也越低.为了解决这一问题,文中提出基于指数移动平均知识蒸馏的神经网络低比特量化方法.首先利用少量图像进行自适应初始化,训练激活和权重的量化步长,加快量化网络收敛.再引入指数移动平均(EMA)知识蒸馏的思想,利用EMA对蒸馏损失和任务损失进行归一化,指导量化网络训练.在ImageNet、CIFAR-10数据集上的分类任务表明,文中方法可获得接近或超过全精度网络的性能.  相似文献   

5.
随着深度学习方法的不断发展,其存储代价和计算代价也不断增长,在资源受限的平台上,这种情况给其应用带来了挑战。为了应对这种挑战,研究者提出了一系列神经网络压缩方法,其中知识蒸馏是一种简单而有效的方法,成为研究热点之一。知识蒸馏的特点在于它采用了“教师—学生”架构,使用一个大型网络指导小型网络进行训练,以提升小型网络在应用场景下的性能,从而间接达到网络压缩的目的。同时,知识蒸馏具有不改变网络结构的特性,从而具有较好的可扩展性。本文首先介绍知识蒸馏的由来以及发展,随后根据方法优化的目标将知识蒸馏的改进方法分为两大类,即面向网络性能的知识蒸馏和面向网络压缩的知识蒸馏,并对经典方法和最新方法进行系统的分析和总结,最后列举知识蒸馏方法的几种典型应用场景,以便加深对各类知识蒸馏方法原理及其应用的理解。知识蒸馏方法发展至今虽然已经取得较好的效果,但是各类知识蒸馏方法仍然有不足之处,本文也对不同知识蒸馏方法的缺陷进行了总结,并根据网络性能和网络压缩两个方面的分析,给出对知识蒸馏研究的总结和展望。  相似文献   

6.
针对基于深度学习的人脸识别模型难以在嵌入式设备进行部署和实时性能差的问题,深入研究了现有的模型压缩和加速算法,提出了一种基于知识蒸馏和对抗学习的神经网络压缩算法。算法框架由三部分组成,预训练的大规模教师网络、轻量级的学生网络和辅助对抗学习的判别器。改进传统的知识蒸馏损失,增加指示函数,使学生网络只学习教师网络正确识别的分类概率;鉴于中间层特征图具有丰富的高维特征,引入对抗学习策略中的判别器,鉴别学生网络与教师网络在特征图层面的差异;为了进一步提高学生网络的泛化能力,使其能够应用于不同的机器视觉任务,在训练的后半部分教师网络和学生网络相互学习,交替更新,使学生网络能够探索自己的最优解空间。分别在CASIA WEBFACE和CelebA两个数据集上进行验证,实验结果表明知识蒸馏得到的小尺寸学生网络相较全监督训练的教师网络,识别准确率仅下降了1.5%左右。同时将本研究所提方法与面向特征图知识蒸馏算法和基于对抗学习训练的模型压缩算法进行对比,所提方法具有较高的人脸识别准确率。  相似文献   

7.
神经机器翻译(NMT)模型通常具有庞大的参数量,例如,Transformer在词表设为3万时有将近1亿的神经元,模型的参数量越大,模型越难优化,且存储模型的资源需求也越高.该文提出了一种压缩方法,用于将复杂且参数量大的N MT模型压缩为精简参数量小的N MT模型.该文同时提出半知识蒸馏方法和递进式半知识蒸馏方法,其中半...  相似文献   

8.
知识蒸馏被广泛应用于语义分割以减少计算量.以往的语义分割知识提取方法侧重于像素级的特征对齐和类内特征变化提取,忽略了对语义分割非常重要的类间距离知识的传递.为了解决这个问题,本文提出了一种类间距离提取方法,将特征空间中的类间距离从教师网络转移到学生网络.此外,语义分割是一个位置相关的任务,因此本文开发了一个位置信息提取模块来帮助学生网络编码更多的位置信息.在Cityscapes、Pascal VOC和ADE20K这3个流行的语义分割数据集上的大量实验表明,该方法有助于提高语义分割模型的精度,取得了较好的性能.  相似文献   

9.
杨英仪 《信息与电脑》2022,(13):50-53+57
针对基于深度学习的智能识别模型在变电智能巡视装备本体集成应用时硬件资源受限的问题,本文提出了基于知识蒸馏的压缩与集成应用方法。该方法通过采用Detr模型对初始目标进行识别,再利用Deformable Detr算法对Detr模型进行压缩,使压缩率达到87.5%的同时,确保目标检测精度维持在较高水平,实现了目标检测模型在变电站巡检机器人本体上的有效集成应用。  相似文献   

10.
在传统知识蒸馏框架中,教师网络将自身的知识全盘传递给学生网络,而传递部分知识或者特定知识的研究几乎没有。考虑到工业现场具有场景单一、分类数目少的特点,需要重点评估神经网络模型在特定类别领域的识别性能。基于注意力特征迁移蒸馏算法,提出了三种特定知识学习算法来提升学生网络在特定类别分类中的分类性能。首先,对训练数据集作特定类筛选以排除其他非特定类别的训练数据;在此基础上,将其他非特定类别视为背景并在蒸馏过程中抑制背景知识,从而进一步减少其他无关类知识对特定类知识的影响;最后,更改网络结构,即仅在网络高层抑制背景类知识,而保留网络底层基础图形特征的学习。实验结果表明,通过特定知识学习算法训练的学生网络在特定类别分类中能够媲美甚至超越参数规模六倍于它的教师网络的分类性能。  相似文献   

11.
精馏塔的机理-神经网络混合建模   总被引:1,自引:0,他引:1  
酒精精馏过程是一个复杂的化工过程,动态响应缓慢,内在机理复杂,参数间相互关联.为了解决精馏塔机理模型精度低和神经网络模型外推能力差的缺点,同时也为了精馏塔的先进控制提供一种可靠的先进模型,针对试验室酒精精馏塔,充分发挥机理模型和神经网络模型的特点,建立一种基于机理模型和神经网络补偿模型的酒精精馏塔的混合模型.最后对混合模型进行了仿真试验,仿真结果显示有很好的性能,精馏塔的精馏精度和精馏效率都得到了很大的提高.而且下一步正准备以此模型为基础,设计精馏塔的先进控制算法.  相似文献   

12.
针对卷积神经网络中卷积层参数冗余,运算效率低的问题,从卷积神经网络训练过程中参数的统计特性出发,提出了一种基于统计分析裁剪卷积核的卷积神经网络模型压缩方法,在保证卷积神经网络处理信息能力的前提下,通过裁剪卷积层中对整个模型影响较小的卷积核对已训练好的卷积神经网络模型进行压缩,在尽可能不损失模型准确率的情况下减少卷积神经网络的参数,降低运算量.通过实验,证明了本文提出的方法能够有效地对卷积神经网络模型进行压缩.  相似文献   

13.
神经网络压缩技术的出现缓解了深度神经网络模型在资源受限设备中的应用难题,如移动端或嵌入式设备.但神经网络压缩技术在压缩处理的自动化、稀疏度与硬件部署之间的矛盾、避免压缩后模型重训练等方面存在困难.本文在回顾经典神经网络模型和现有神经网络压缩工具的基础上,总结参数剪枝、参数量化、低秩分解和知识蒸馏四类压缩方法的代表性压缩算法的优缺点,概述压缩方法的评测指标和常用数据集,并分析各种压缩方法在不同任务和硬件资源约束中的性能表现,展望神经网络压缩技术具有前景的研究方向.  相似文献   

14.
一种基于动态量化编码的深度神经网络压缩方法   总被引:1,自引:0,他引:1  
饶川  陈靓影  徐如意  刘乐元 《自动化学报》2019,45(10):1960-1968
近年来深度神经网络(Deep neural network,DNN)从众多机器学习方法中脱颖而出,引起了广泛的兴趣和关注.然而,在主流的深度神经网络模型中,其参数数以百万计,需要消耗大量的计算和存储资源,难以应用于手机等移动嵌入式设备.为了解决这一问题,本文提出了一种基于动态量化编码(Dynamic quantization coding,DQC)的深度神经网络压缩方法.不同于现有的采用静态量化编码(Static quantitative coding,SQC)的方法,本文提出的方法在模型训练过程中同时对量化码本进行更新,使码本尽可能减小较大权重参数量化引起的误差.通过大量的对比实验表明,本文提出的方法优于现有基于静态编码的模型压缩方法.  相似文献   

15.
基于BP神经网络的图像压缩的Matlab实现   总被引:3,自引:0,他引:3  
BP网络是目前最常用的一种人工神经网络模型,它利用多层前馈网络的模式变换能力实现数据编码,直接提供数据压缩能力.在介绍BP网络图像压缩机原理及算法的基础上,通过计算机Matlab仿真实验实现数字图像压缩,并分析了各种参数对重建图像性能的影响.  相似文献   

16.
龚成  卢冶  代素蓉  刘方鑫  陈新伟  李涛 《软件学报》2021,32(8):2391-2407
深度神经网络(deep neural network,简称DNN)量化是一种高效的模型压缩方法,使用少量位宽表示模型计算过程中的参数和中间结果数据.数据位宽会直接影响内存占用、计算效率和能耗.以往的模型量化研究缺乏有效的定量分析,这导致量化损失难以预测.提出了一种超低损失的DNN量化方法(ultra-low loss ...  相似文献   

17.
近几年来,深度神经网络在多个领域展现了非常强大的应用能力,但是研究者们发现,通过在输入上添加难以察觉的扰动,可以改变神经网络的输出决策,这类样本被称为对抗样本.目前防御对抗样本,最常见的方法是对抗训练,但是对抗训练有着非常高的训练代价.我们提出了一种知识蒸馏的鲁棒性迁移方案(Robust-KD),结合特征图与雅克比矩阵...  相似文献   

18.
深度网络模型压缩综述   总被引:3,自引:0,他引:3  
雷杰  高鑫  宋杰  王兴路  宋明黎 《软件学报》2018,29(2):251-266
深度网络近年在计算机视觉任务上不断刷新传统模型的性能,已逐渐成为研究热点.深度模型尽管性能强大,然而由于参数数量庞大、存储和计算代价高,依然难以部署在受限的硬件平台上(如移动设备).模型的参数一定程度上能表达其复杂性,相关研究表明并不是所有的参数都在模型中发挥作用,部分参数作用有限、表达冗余、甚至会降低模型的性能.本文首先对国内外学者在深度模型压缩上取得的成果进行了分类整理,依此归纳了基于网络剪枝、网络精馏和网络分解的方法;随后,总结了相关方法在多种公开深度模型上的压缩效果;最后,对未来研究可能的方向和挑战进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号