首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于T型分支线结构设计了两种新型的小型化差分滤波器,一种是单通带滤波器,另一种是双通带滤波器。其中,单通带滤波器在中心对称线处增加开路支节,构成T型分支结构,可以实现良好的共模抑制。为了验证上述的理论分析,本文设计两个滤波器(ε_r=2.65,h=1mm),单通带滤波器的差模通带中心频率f0为2.5GHz,阻带范围为3.1~9.7GHz,-3dB相对带宽为14.7%(2.2~2.8GHz);双通带滤波器的差模通带中心频率分别为2.2GHz和6.4GHz,-3dB相对带宽分别为18.2%(2~2.4GHz)和9.2%(6.2~6.8GHz)。实测结果与理论预期一致。  相似文献   

2.
应用LTCC技术,设计了一款带通滤波器。采用开口环谐振结构作为基本谐振单元,利用谐振级之间的耦合产生传输零点,实现边带抑制。给出了开口环谐振结构的等效电路分析,滤波器的通带中心频率为23.2 GHz,3-dB带宽为600 MHz,具有很窄的相对带宽,3-dB相对带宽仅为2.6%。对滤波器进行仿真和优化,结果表明,通带22.9~23.5 GHz内插损小于3 dB,低阻带10~21.1 GHz的衰减大于45 dB,高阻带25.3~40 GHz的衰减均大于30 dB。该滤波器的尺寸为4 mm×3.5 mm×0.45 mm,具有非常好的窄带特性和边带抑制特性。  相似文献   

3.
提出了一种基于双光源与双相移光纤光栅(DPS- FBG)的可调谐微波光子滤波器。双光源经过相 位调制后,利用DPS-FBG的反射模式中的两超窄陷波分别对两相位调制光信号的边带进行抑 制,实现相 位调制至强度调制的转换。通过调节两光源的中心波长可以实现单通带与双通带之间的切换 ,实现单通带 的中心频率可调以及3dB带宽可调,实现双通带频率同时可调或者单独可调。建立了理论模 型并进行了数 值分析,最后通过实验进行了验证。实现了滤波器通带的3dB带宽由180MHz增加为319MHz,中心频率从1GHz到7GHz可调。  相似文献   

4.
在基片集成波导(SIW)结构中加载了互补螺旋谐振器(CSR),实现了具有超宽带外抑制的带通滤波器。CSR是复合左右手结构的一种,其等效电路与互补开口谐振环(CSRR)的相似,但CSR结构更加紧凑,设计更加灵活。SIW具有与传统金属波导相似的结构特点和分析方法,但它体积更小,且更容易与其它平面电路结合。将两个CSR单元加载到SIW中,会产生一个低于SIW截止频率的通带。调整两个CSR单元的位置,会在通带的两侧分别产生一个传输零点。本文设计的带通滤波器较传统的SIW滤波器体积更小,并且具有更宽的带外抑制。根据测试结果,滤波器的中心频率为7.68GHz,3dB带宽为394 MHz,带内插损最小值为1.91dB,带外抑制在9~18GHz范围内优于30dB。  相似文献   

5.
为满足滤波器在双频带通信系统中发展的要求,提出了一种基于1/4模基片集成波导(QMSIW)加载互补开口谐振环(CSRR)的新型双通带滤波器。根据CSRR谐振器的传输特性,实现以其谐振频点为中心的第一个通带;设计QMSIW谐振腔的边长,实现以该腔体谐振频点为中心的第二通带;设计QMSIW腔体间的耦合方式,在两通带之间和高阻带处各引入一个传输零点,加强两通带隔离度和带外抑制。设计了一款两通带的中心频率分别为8.1 GHz和11.5 GHz,且有效尺寸仅为15 mm×8 mm,插入损耗低于0.4 dB,高阻带衰减达64 dB,两通带隔离度达46 dB。  相似文献   

6.
该文提出了一种新型的非对称枝节加载环形谐振器,并研究了该谐振器的性质。基于提出的谐振器设计了一款双频带通滤波器,并进行了测试。测试结果表明:滤波器的两个通带的中心频率分别为2.38 GHz和5.19 GHz,带宽分别约为140 MHz和90 MHz,带内插损分别小于1.7 dB和2.2 dB,回波损耗分别大于15 dB和12 dB。4个传输零点按频率由低到高分别为1.78 GHz,3.34 GHz,4.98 GHz和5.96 GHz,这些零点极大地提高了滤波器的选择性。  相似文献   

7.
基于开环双模谐振器设计了一种双频带通滤波器,由两个中心重合的正方形开口环谐振器组成。分析该谐振器的奇偶模谐振频率与传输零点,每个通带内有两个谐振模式。该滤波器中心频率分别为4.5 GHz和6.5 GHz,3 dB相对带宽FBW分别为11%、5%,两通带带内插入损耗分别小于0.6 dB、1.4 dB,带内回波损耗分别优于19.5 dB、16.5 dB,高频处阻带抑制达到50 dB,两通带之间隔离度达到53 dB,尺寸仅为6 mm×11 mm×1.09 mm。  相似文献   

8.
提出了一种具有慢波特性的扇形基片集成波导谐振腔,设计了一款小型化双频带通滤波器,相较于传统SIW带通滤波器,该滤波器小型化率为64%。通过引入金属盲孔结构实现了滤波器双频带中心频率的调节,同时,采用源负载耦合结构,在带外产生了4个传输零点,实现了滤波器的高选择特性。测试结果表明,滤波器的双通带中心频率分别为4.86 GHz和6.81 GHz,3 dB带宽分别为238 MHz和212 MHz,双频带插入损耗分别优于0.9 dB和1.1 dB,与仿真结果基本一致。  相似文献   

9.
本文设计了一种紧凑型、宽通带、宽阻带的微带带通滤波器。该滤波器的设计是基于带有两个开路调节支节的正方谐振环。基于紧凑性的考虑,改变了传统方环谐振滤波器的馈电点和开路调节支节的位置,以便对谐振环进行折叠处理。这种改变并不影响谐振环的奇偶模特性。在输入和输出端口,通过两个叉指耦合结构对滤波器进行馈电,这种馈电方式增加了滤波器阻带的带宽和抑制度。滤波器的中心频率为4GHz,相对带宽为45%,通带内的回波损耗小于-12dB,群时延小于0.8ns,1-2.9GHz阻带抑制度大于12dB,5.3~7GHz阻带抑制度大于18dB。  相似文献   

10.
从理论上分析了开路支节加载双频谐振器的谐振模式,通过在谐振器末端加载变容二极管的方式,设计了一款双通带独立可调谐滤波器。通过调节谐振器末端变容二极管电容值大小来改变通带的中心频率,通过调节支节末端的变容二极管来调节通带的带宽。该滤波器的两个通带之间相互独立,调谐其中一个通带对另一个通带几乎没有影响。通过引入源与负载的耦合,使得双通带两侧各产生一个传输零点,提高了滤波器的选择性和带外抑制能力。最终设计出的滤波器第一通带的中心频率在1.08~1.19 GHz之间连续可调,绝对带宽在112~152 MHz之间连续可调;第二通带中心频率在2.07~2.22 GHz 之间连续可调,其绝对带宽在132~189 MHz 之间连续可调。在调谐过程中,通过调节中心开路支节末端变容二极管加载直流电压大小,实现调谐过程两通带带宽基本维持不变。  相似文献   

11.
在传统微带线结构基础上利用阶跃阻抗并联短截线SISS(Step-Impedance Shunt Stubs)的带阻及慢波抑制特性,提出了一种新的基于SISS 缺陷微带线结构S-DMS(SISS Defected Microstrip Structure),利用该结构设计制作了具有谐波抑制功能的双通带滤波器。采用HFSS 进行仿真优化,在此基础上进行了实物加工,获得了通带中心频率为3.5 GHz,8.5 GHz,插入损耗分别为0.45 dB,2.7 dB,3 dB 带宽分别是550 MHz,260 MHz,带外最大抑制小于-40 dB 的实测结果,与仿真结果相当吻 合。结果表明该双通带滤波器具有良好的谐波抑制能力、小带内衰减和宽且深的阻带特性。  相似文献   

12.
为在高频率选择性和大带宽的前提下实现小型化,提出一种紧凑非对称双枝节加载的易级联多模谐振滤波器.采用微波网络级联方法,分析优化设计了中心频率为6 GHz的单级、两级和三级多模谐振宽带滤波器.测试结果表明,该滤波器在5.41 mm×7.61 mm(0.21λg×0.29λg)有效尺寸下,带外抑制优于40 dB,损耗小于2...  相似文献   

13.
提出了一种基于磁性光子晶体的高性能微波带通滤波器。仿真计算和实验测量结果表明,该滤波器矩形系数好,插入损耗小,带外抑制高且带内平坦。研制的中心频率为10.75 GHz的通带滤波器,带宽达1.3GHz,通带内插入损耗小于5dB,带外抑制50dB以上。改变磁性圆柱的半径或磁性光子晶体的晶格常数可设计出工作在不同频段,具有不同带宽的微波滤波器。  相似文献   

14.
提出了一种基于磁性光子晶体的高性能微波带通滤波器。仿真计算和实验测量结果表明,该滤波器矩形系数好,插入损耗小,带外抑制高且带内平坦。研制的中心频率为10.75 GHz的通带滤波器,带宽达1.3GHz,通带内插入损耗小于5dB,带外抑制50dB以上。改变磁性圆柱的半径或磁性光子晶体的晶格常数可设计出工作在不同频段,具有不同带宽的微波滤波器。  相似文献   

15.
介绍了一种基于LTCC工艺的梳状线带通滤波器的设计方法,滤波器包含四个谐振单元,每个谐振单元采用多层交叠带线结构。利用电磁仿真软件HFSS提取输入输出谐振单元的外部Q值以及谐振单元间的耦合系数,通过在第一级与第四级谐振单元之间引入Z型容性耦合,在上下边带各插入一个传输零点,提高带外抑制能力。实测结果显示,滤波器在中心频率3.35GHz处的插入损耗小于3dB,-1dB带宽大于400 MHz,带外抑制在DC-2.5GHz内大于40dB,在4~8GHz内大于30dB。  相似文献   

16.
在理论方面,作者应用COM理论分析研究了纵向耦合谐振滤波器通带波纹大小和耦合换能器与输入/输出换能器间距离的关系。在工艺上,作者采用剥离工艺制作了相应的纵向耦合谐振滤波器,并给出了所设计的纵向耦合谐振滤波器频率响应的测试结果。实验测得样品滤波器中心频率为895 MHz,1 dB带宽40.5 MHz,阻带抑制达到47 dB,插入损耗3.8 dB,通带波纹小于0.9 dB。实验与理论分析比较一致。  相似文献   

17.
基于Add-Drop型氮化硅微环滤波器,利用光学单边带调制和光载波分离的方法,实现可重构微波光子带通滤波器。滤波器带宽和带外抑制比分别达到726 MHz和37.0dB。并且通过改变光载波波长实现1.64~23.41GHz的滤波器频率调谐;通过调节微环耦合系数实现0.683~2.246GHz的滤波器带宽调谐,在带宽调谐范围内带外抑制比大于26dB。  相似文献   

18.
提出了一种新型的四模谐振器,并在此基础上设计了一款双通带滤波器。利用奇偶模分析法进行理论分析,采用共面波导异面馈电方式,使四模谐振器中的每两个谐振频率耦合,分别形成滤波器的低通带与高通带。通过射频仿真软件HFSS 研究滤波器主要结构参数对性能的影响并进行优化,对滤波器进行加工制作及测试。测试结果表明双通带滤波器的中心频率分别为2 GHz 和5.4 GHz, 3 dB 相对带宽分别为11.9%和17%,电路尺寸为0.11λg ×0.1λg。所设计的双通带滤波器具有结构新颖、通带宽、尺寸小的特点。  相似文献   

19.
可调微带矩形环带通滤波器   总被引:1,自引:1,他引:0       下载免费PDF全文
姚兰  洪伟  吴柯 《微波学报》2011,27(4):57-60
给出了一种可调微带矩形环带通滤波器的仿真和实验结果。在微带矩形环谐振器内加载折线路径,利用PIN管的导通断开状态获得不同的谐振长度,从而实现在2.5GHz和5.2GHz两个频段上带通滤波器的电控切换。PIN管开关正向导通时,在电路中等效于一个电阻,带通滤波器工作的中心频率为5.2GHz,带宽1.2GHz,插入损耗1.08dB;开关断开时,在电路中等效于一个电容,滤波器通带工作频率约为2.5GHz,带宽10MHz,插入损耗为1.99dB。  相似文献   

20.
应用双指耦合结构和枝节加载谐振器(Stub-loaded Resonator,SLR)实现了一款基于阶梯阻抗谐振器(Stepped Impedance Resonator,SIR)的滤波器。该滤波器具有3个通带,带外抑制较好,工作频段提高。通过调整阻抗比可调节第二、三通带的谐振频率;SLR结构能够增加通带数量;SLR结构和双指耦合结构均能改善滤波器的S参数。HFSS软件仿真表明,3个通带的中心频率分别为3.5 GHz、6.6 GHz、9.2 GHz,对应的分数带宽分别为5.7%、3%、2%,S11分别为-18 dB、-22 dB、-24 dB,通带内的S21分别为-1.8 dB、-1 dB、-1 dB。电路的测量结果与仿真结果较为吻合。该滤波器在5G通信的低频段具有应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号