首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究空气流入高温填充床时小球直径和空气流速变化对填充床内对流换热和压力损失等的影响,利用孔隙尺度介观方法对顺序排列多孔介质小球的三维填充床进行数值计算,数值计算与实验结果吻合较好。结果表明:填充床内固相和气相间存在热的非平衡性;当小球直径从2.8增大到5.6 mm时,在最高温度上游对流换热强度减小,在最高温度下游对流换热强度增大,同时,压力损失和最大无量纲速度减小;气体流速增大时,填充床内产生湍流运动。  相似文献   

2.
壁面覆盖部分多孔介质方腔自然对流流动的数值模拟   总被引:1,自引:0,他引:1  
多孔介质壁面封闭腔体的自然对流在生产实际中有重要的应用。针对左侧部分多孔介质壁面方形封闭腔体,基于有限元法对封闭腔体的自然对流换热进行了数值模拟,得到了在不同Ra、孔隙率条件下腔体内空气的温度分布、速度分布。结果表明:随着Ra的增大,腔体内的流场及温度场发生了明显的变化,多孔介质壁面孔隙率的变化对腔体的流动换热的影响很小。  相似文献   

3.
4.
利用PIV技术对部分填充多孔介质腔体内的二维流动进行测试试验,采用三维打印技术构造高孔隙率的球体结构作为多孔介质模型,搭建了二维PIV测试试验台对部分填充多孔介质复合腔体内自然流动进行了实验测试。通过实验结果与模拟结果的对比分析,发现在多孔介质中间断面位置,因两侧端面导致的三维效应可忽略不计,可以作为二维流场的最佳测试断面。  相似文献   

5.
在水平圆管外填充固体颗粒情况下,以丙酮为工质,通过改变声空化强度、距离,颗粒直径,多孔层高度和液体过冷度等相关参数对水平圆管单相及沸腾换热的影响进行了实验研究。并分析了影响水平圆管换热的因素,及沸腾滞后的影响规律。  相似文献   

6.
对流型地层内井下换热器实验模拟研究   总被引:4,自引:0,他引:4  
采用3-5mm的饱和微珠玻璃球堆来模拟同轴管式井下换热器(DCHE)周围对流型地温地层,对其换热过程中温度分布及其变化、主要影响因素进行了实验研究,为利用同轴管式井下换热器开发地热资源提供依据。  相似文献   

7.
针对Darcy-Brinkman-Forchheimer流动模型,分析了幂律型非牛顿流体在填充多孔介质平板通道中强迫对流传热过程充分发展的黏性耗散效应,并比较了三个不同的黏性耗散项Darcy项、Al-Hadhrami项和Forchheimer项对流动传热率的影响。推导出了无量纲轴向流速分布和无量纲温度分布的计算表达式,并在恒热流边界条件下,利用经典Runge-Kutta法进行数值求解。模拟结果表明,布林克曼数Br、达西数Da、综合惯性参数F和幂律指数n等重要参数对无量纲温度分布有着较大的影响,同时发现不同的黏性耗散效应对流动传热特性也有着重要的影响。  相似文献   

8.
以Fluent 6.3为平台,采用局部非热平衡模型,对紊流及紊流过渡区范围内骨架发热多孔介质竖直通道内的非达西强制对流换热进行了数值模拟。采用三维N-S方程及标准k-ε湍流模型描述多孔介质内的流动,详细研究了孔隙有效雷诺数Re(400Re2000),表面热流密度q(q=5、30和90 kW/m2)和冷却剂入口温度Tin(Tin=20、50和80℃)的变化对多孔介质流道内流动阻力及换热特性的影响。结果表明:低热流密度下,表面热流密度的变化对流动阻力和换热系数的影响很小;小球直径对换热系数的影响显著,且随着雷诺数的增加而增加;换热系数随冷却剂入口温度的增加而减小。  相似文献   

9.
纵向涡强化竖直平板自然对流换热的实验研究   总被引:3,自引:1,他引:3  
对纵向涡强化竖直平板自然对流换热进行了实验研究。结果表明,在一定的Rayleigh数范围内,直角三角翼纵向涡发生器的攻角、翼高、翼宽等几何参数是影响强化换热的主要因素。存在最佳攻角;宽高比一定时,翼高和翼宽的变化会影响换热的效果。发现在直角三角翼阵列中前排直角三角翼产生的纵向涡可以强化后排直角三角翼纵向涡的换热。将直角三角翼与矩形低肋换热表面的性能作了对比性实验,在其他条件相同的情况下,直角三角翼强化换热的效果优于矩形低肋。  相似文献   

10.
应用红外热像技术研究了静止空气的大空间环境下水平旋转圆柱表面的对流换热与转速的关系。在本文的实验范围内,当Re在7300以下时,对流换热随Re的增大而迅速增加,Re超过7300时,其增加速度逐渐变缓,当Re增大到9600时,对流换热反而随Re的增加而减弱,实验结果与理论分析一致。  相似文献   

11.
自激振荡脉冲对流换热的实验研究   总被引:1,自引:1,他引:1  
将Helmhotz共振腔应用于换热器来增强换热是一种新的强化换热方法。设计了一种换热效果较好的Helmhotz共振腔,并通过实验研究了Helmhotz共振腔对换热器的换热强化效果,分析了水力参数和结构参数对换热效果的影响,结果发现:对一定结构的共振腔,配以适当的水力参数,就可以产生自激振荡;对于同一结构的共振腔,水力参数不同,产生自激振荡的强弱也不同,随着压力的增加,自激振荡的强度也增加;将共振腔产生的自激振荡流引入换热器后,当自激振荡达到一定的强度时,能够破坏层流底层,从而可以强化换热;Helmhotz共振腔在绝大多数工况下能将管内换热系数提高10%-30%。  相似文献   

12.
细圆管内氧化铜颗粒悬浮液流动与对流换热的实验研究   总被引:4,自引:0,他引:4  
实验研究了氧化铜纳米悬浮液在内径为0.68mm不锈钢细圆管内迫流动和对流换热。氧化铜纳米颗粒悬浮液的质量分数W为0.02-0.06,分别去离子水和水-纳米颗粒悬浮液的流动,传热特性进行了实验测定。实验结果表明:所研究尺度下,层流向湍流过渡早于常规大尺度流动,悬浮液的压降要大于去离子水的;纳米颗粒的质量分数越大,压力降也越大,悬浮液的对流换热系统随颗粒质量分数的增大而增大。  相似文献   

13.
对竖直圆管内空气强迫对流换热与自然对流换热进行了实验,从量级上表明了两者的不同,由实验得到了用雷诺数表示的自然对流换热关联式,与现有的大空间自然对流换热公式作了比较。  相似文献   

14.
迟广舟  陈宝明  郝文兰 《节能》2010,29(12):17-20
管内填充多孔介质强化换热的基本原理是构造热边界层,增大壁面附近流体的温度梯度,并且流动阻力增幅不大。本文运用数值模拟的方法,模拟填充多孔介质管内的流场和温度场,探讨填充比例φ、渗透率Da以及空隙率ε对管内对流换热的影响规律。研究表明,提高填充比例φ和减小渗透率Da都能明显提高换热效果,但也增加了管内流动阻力。空隙率ε对强化换热作用不大,但高空隙率可以明显降低管内流动阻力,在实际中应选用空隙率较大的多孔介质。  相似文献   

15.
多孔介质填塞是传热强化的有效方法之一。与单分散(普通)多孔介质相比,双分散多孔介质含有多孔骨架相和裂纹相,流体充满裂纹相(大孔隙)和多孔骨架相内小孔隙,因此具有更大的比表面积。基于双速度-双温度模型,分析了恒热流边界条件下双分散多孔介质圆管通道的强迫对流传热,并推导了两相的无量纲温度以及Nu的解析解。参数分析表明,多孔骨架发热会在通道壁-双分散多孔介质交界面上出现热流(温度梯度)分岔现象,并从数学和传热学角度阐释了其发生机理。在骨架吸热情形下,单分散和双分散多孔介质通道的Nu均呈现不连续特征,而对于双分散多孔介质通道,当有效导热系数比较大时,这种不连续特征仅出现在骨架生热情形。并且分析了Nu的渐近行为。  相似文献   

16.
等温竖壁自然对流换热的数值模拟   总被引:1,自引:0,他引:1  
采用相似变换及箱形格式对等温竖壁自然对流换热进行数值模拟,计算结果与传统的相似解结果相符,表明用此方法求解自然对流换热问题是可行的。  相似文献   

17.
基于多孔介质燃烧的端部辐射器的实验研究   总被引:1,自引:0,他引:1  
设计了基于多孔介质燃烧技术的端部辐射器,研究不同预混气体流速(功率)下当量比对燃烧器燃烧稳定性、多孔介质内部温度、辐射器表面温度及其均匀性、污染物排放、辐射效率等特性的影响.结果表明,燃烧器辐射表面的温度均匀性较好.最大相对温差小于3%:多孔介质燃烧器可实现最低当量比0.33的稳定可持续燃烧;小功率燃烧时.多孔介质内部温度及端部辐射表面温度都随当量比增大而增加,且流量越大增加程度越大,可据此提出实现更高辐射表面温度的方案.实验工况范围内.最大辐射效率达23%;NO<,x>排放体积分数低于25×10<'6>,在当量比大于0.45时,CO排放体积分数均低于10×10<'6>.  相似文献   

18.
王素娟  孙锐 《节能技术》2007,25(4):313-316,329
本文考虑向燃烧室中插入高孔隙率的多孔介质的燃烧过程,根据气固两相局部非热平衡假设,建立了混合气体在惰性多孔介质中预混燃烧的一维数学模型,模拟了不同条件下甲烷-空气的预混合气在多孔介质中燃烧时的温度分布及气体流速、当量比和吸收系数对燃烧室气体温度峰值的影响.结果表明,多孔介质的存在明显改善了燃烧室的换热性能,强化了对新鲜混合气的预热,加速了燃烧反应的进行,燃烧室利用率提高.  相似文献   

19.
本文对竖壁自然对流求解提出了新的条件假设,给出了其合理的控制方程,通过计算,得出了自然对流计算的新准则关系式,拓展准则的适用范围,可以为工程精计算采用。  相似文献   

20.
在管内流体流场可视化实验研究的基础上,探讨了横置大长径比(l/d)的全玻璃真空集热管,在等热流加热条件下管内自然对流换热规律,并给出了准则方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号