首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present experiments on the melt and crystal morphology of a asymmetric semi-crystalline poly(ethylene/butylene-b-ethyleneoxide) diblock copolymer (PBh-b-PEO) in bulk as well as in thin films. Simultaneous small- and wide-angle X-ray scattering combined with AFM and TEM images reveal in the melt a bulk morphology of hexagonally packed cylinders of PEO in a PBh matrix, that transforms into a hexagonal perforated lamellar phase upon crystallization. X-ray reflectivity of thin films of PBh-b-PEO in the melt indicates wetting layers at the top and bottom interfaces, which force the cylinders in the interior to orient parallel to the substrate. Crystallization of the PEO block leads to roughening of the air/film interface and causes lateral structuring coexisting with planar lamellar layers in thinner films.  相似文献   

2.
The morphology and the phase diagram of the ABC block copolymer on the polymer-coated substrate were studied by using the self-consistent field theory. Due to the asymmetric surfaces for the block copolymer thin film, the rich hetero-structures occur, which are the combination of two different microstructures, such as perforated lamellar and lamellar phase (PL + L), cylindrical and lamellar phase (C + L). The phase diagrams were constructed for the identical interaction parameters case and the non-frustrated case. The effect of the film thickness is also considered at the fixed grafting density. Comparing the results, we found that the essence of the variation of the grafting density is the change of the effective film thickness in most cases. The relationship between the grafting density and the film thickness is constructed. Our results offer another way to tailor the phase behavior of the block copolymer thin film and obtain the hetero-structures on nanoscale.  相似文献   

3.
Morphologies of polymer blends based on polystyrene‐b‐ polybutadiene‐b ‐poly(methyl methacrylate) (SBM) triblock copolymer were predicted, adopting the phase diagram proposed by Stadler and co‐workers for neat SBM block copolymer, and were experimentally proved using atomic force microscopy. All investigated polymer blends based on SBM triblock copolymer modified with polystyrene (PS) and/or poly(methyl methacrylate) (PMMA) homopolymers showed the expected nanostructures. For polymer blends of symmetric SBM‐1 triblock copolymer with PS homopolymer, the cylinders in cylinders core?shell morphology and the perforated lamellae morphology were obtained. Moreover, modifying the same SBM‐1 triblock copolymer with both PS and PMMA homopolymers the cylinders at cylinders morphology was reached. The predictions for morphologies of blends based on asymmetric SBM‐2 triblock copolymer were also confirmed experimentally, visualizing a spheres over spheres structure. This work presents an easy way of using PS and/or PMMA homopolymers for preparing nanostructured polymer blends based on SBM triblock copolymers with desired morphologies, similar to those of neat SBM block copolymers. © 2017 Society of Chemical Industry  相似文献   

4.
A polystyrene (PS)‐b‐polylactide (PLA) block copolymer was prepared from the combination of atom transfer radical polymerization and ring‐opening polymerization with commercially available 2,2,2‐tribromoethanol as a dual initiator in a sequential two‐step procedure. Hydroxyl‐terminated polystyrene (PS‐OH)s with various molecular weights were first prepared with polydispersity indices lower than 1.3; these provided valuable macroinitiators for the polymerization of D,L ‐lactide. A block copolymer with a composition allowing the formation of hexagonally packed PLA cylinders in a PS matrix was then obtained. The PS‐b‐PLA thin films revealed, after vapor solvent annealing, a hexagonally packed organization of the PLA cylinders, which was oriented perpendicularly to the surface of the film. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
We report the morphological characterization of asymmetric miktoarm star block copolymers of the (PS-b-PI)nPS type where n=2,3 (denoted 2DB and 3DB miktoarm stars, respectively) and a symmetric super H-shaped block copolymer of the (PS-b-PI)3PS(PI-b-PS)3 type (denoted SH) which were synthesized by anionic polymerization. The initial volume fraction of PS (φPS) for each copolymer was 0.51-0.56, giving a lamellar morphology. Addition of homopolystyrene (hPS) with a molecular weight lower than the respective PS blocks in the neat materials lead to a transition from the lamellar structure to hexagonally packed cylinders. Addition of low molecular weight homopolyisoprene (hPI) on the other hand, only resulted in swollen lamellae even when the overall composition was highly asymmetric (80/20). Changes in the lamellar spacing as well as in the respective PS and PI layer thickness were measured by SAXS. The transition from lamellae to cylinders with increased PS content occurred without the observation of an intervening cubic morphology for the 2DB and 3DB miktoarm stars. However, blends with 30 and 35% hPS ((φPS)total=0.68-0.70) with the super H-shaped block copolymer lead to the observation of lamellar-catenoid structures.  相似文献   

6.
Self-assembly of linear ABC coil-coil-rod triblock copolymers   总被引:1,自引:0,他引:1  
Yingdong Xia  Zhaoyan Sun  Lijia An  Yuxi Jia 《Polymer》2010,51(14):3315-10960
Self-assembly of linear ABC coil-coil-rod triblock copolymer melt is studied by applying self-consistent-field lattice techniques in three-dimensional (3D) space. In contrast to rod-coil diblock copolymers, our results reveal the effect of the broad parameter space on the self-assembly of the linear ABC coil-coil-rod triblock copolymers. Seven stable structures are found stable, including “two-color” lamella, “three-color” lamella, “two-color”-perforated lamella, “three-color”-perforated lamella, core-shell hexagonal lattice phase, strip, and micelle. When the two coil blocks have equal lengths (fA = fB), the lamellar structure dominates the majority of the phase diagram. The effects of the two coil blocks on the self-assembly are explored by tuning the relative length of the A and B coil blocks in terms of keeping the length of the block C (rod). Moreover, by switching the position of the blocks B and C, the influence of the block sequencing on the self-assembly is studied.  相似文献   

7.
A polymer blend system consisting of polystyrene grafted onto poly (p-phenylene ethynylene) (PS-g-PPE) and poly (styrene-block-isoprene-block-styrene) triblock copolymer (SIS) yields highly polarized emission due to the unidirectional alignment of the PPE molecules. During the roll casting, the triblock copolymer microphase separates and creates unidirectionally aligned PS cylindrical microdomains in the rubbery PI matrix. PPE, a fluorescent conjugated polymer, was grafted with polystyrene (PS) side chains that enabled sequestration and alignment of these rigid backbone emitter molecules into the PS microdomains of the SIS triblock copolymer. Deforming the thermoplastic elastomer in a direction perpendicular to the orientation direction of the cylinders causes rotation of the PS cylinders and the PPE emitter molecules and affords tunable polarized emission due to re-orientation of the PPE containing PS cylinders as well as film thinning from Poisson effect.  相似文献   

8.
《Polymer》2002,43(15):4207-4216
The surface patterns resulting from fast crystallization of as-cast and annealed thin films (ca. 100 nm) of two polystyrene-b-polybutadiene-b-poly(ε-caprolactone) ABC triblock copolymers is investigated through atomic force microscopy (AFM). Two different substrates are used: silicon and mica. The behaviour is compared with the bulk morphology obtained through transmission electron microscopy (TEM). AFM images of the as-cast films revealed surfaces with lamellar patterns. Based on the observation of T-shaped grain boundaries between lamellae, and on a comparison of the microdomain dimensions obtained by TEM and AFM, the surface pattern is rationalized as being formed by amorphous and crystalline polycaprolactone (PCL), with the PCL/PB block copolymer interfaces located parallel to the susbstrate. The formation of islands and holes in annealed films with a lamellar ‘floor’, depending on the conmensurability between film thickness and long period, is also observed, indicating a parallel orientation of the block copolymer lamellae.  相似文献   

9.
The phase behavior of coil-comb copolymers A–(Bm+1Cm) (side chain number m = 1–5) is investigated by real-space self-consistent field theory (SCFT). Depending on the copolymer composition and architecture, eight two-dimensional ordered phases are observed, including two-color lamellae (LAM2), three-color lamellae (LAM3), hexagonal cylinders (HEX), core–shell hexagonal phase (CSH), hexagon outside hexagonal phase (HEX2), two interpenetrating tetragonal phase (TET2), lamellae with beads inside (LAM + BD), and lamellae with core–shell beads (LAM3 + CSB). When the volume fractions are comparable, i.e., fA ≈ fB ≈ fC, LAM_3 phase is found to be stable for m = 1 while the hexagonal phases (core–shell hexagonal phase CSH or hexagon outside hexagonal phase HEX2) are stable if m > 1. The phase region of the hexagonal phases HEX, CSH or HEX2 enlarges with increasing m. For short coil length, such as fA = 0.1, the phase diagram is complex, especially when m = 1. For longer coil length, the lamellae become the dominant phase. The phase transition from lamellar phase to hexagonal phase is observed with the increase of the side chain length when the side chain number m is large, which is in agreement with the experimental results. Our results give a good way to tailor the phase behavior of block copolymer and are very useful to further study the hierarchical structure of the coil-comb block copolymer.  相似文献   

10.
Surface morphology development for SBM triblock copolymer thin films has been studied by atomic force microscopy. The effect of copolymer composition and solvent on the final morphology has been investigated. Obtained results indicated that depending on the block ratio (symmetric or asymmetric with minority middle block) and solvent, lamellar, hexagonal, cylindrical, or spheres in lamellae (ls)‐type morphologies can be achieved at film surfaces. The influence of the interaction parameters among blocks and solvents and cohesive energy values of block pairs on the final morphology has been proved. POLYM. ENG. SCI., 58:422–429, 2018. © 2017 Society of Plastics Engineers  相似文献   

11.
Polystyrene-b-poly(methyl acrylate) (PS-b-PMA) block copolymer with PS volume fraction of 25.2 vol% was synthesized by atom transfer radical polymerization. Non-pretreated silicon wafers were used as the substrates to prepare perpendicular oriented PS cylinders in PMA matrix via solvent annealing which could induce the transformation of spheres to vertically oriented and hexagonally packed cylinders. The spherical microdomains were formed after the evaporation of solvents from the solutions of the block copolymer in selective solvents mixed from methanol, acetone and dichloromethane. The thickness of films could be as thick as 1000 nm, which were much thicker than usual cases and the cylinders came from the directional coalescence of the spheres, thus any pre-treatments of the substrates were not required for perpendicular orientation. The structures were characterized by small angle X-ray scattering (SAXS), transmission electron microscope (TEM), atom force microscopy (AFM) and grazing incidence small angle X-ray scattering (GISAXS).  相似文献   

12.
Cheng-Wei Tu  Feng-Chih Chang 《Polymer》2009,50(13):2958-1130
A well-defined poly(ethylene oxide-block-N-isopropylacrylamide) (PEO-b-PNIPAM) diblock copolymer was synthesized by atom transfer radical polymerization and formed the inclusion complexes (ICs) after selective threading of the PEO segment of the block copolymer through the cavities of α-cyclodextrin (α-CD) units. The formation of the α-CD/PEO ICs between α-CD and PEO segment of the PEO-b-PNIPAM transformed the system from its original random coil conformation into a rod/coil-like structure. The stacking of the α-CD/PEO ICs and phase separation within the α-CD/PEO-b-PNIPAM IC resulted in the self-assembly of long-range-ordered lamellar structure exhibiting alternating layers of (i) α-CD/PEO ICs with hexagonally packed plates and (ii) amorphous phase of unincluded PEO/PNIPAM with brush conformation.  相似文献   

13.
We demonstrate a new and simple route to fabricate highly dense arrays of hexagonally close packed inorganic nanodots using functional diblock copolymer (PS-b-P4VP) thin films. The deposition of pre-synthesized inorganic nanoparticles selectively into the P4VP domains of PS-b-P4VP thin films, followed by removal of the polymer, led to highly ordered metallic patterns identical to the order of the starting thin film. Examples of Au, Pt and Pd nanodot arrays are presented. The affinity of the different metal nanoparticles towards P4VP chains is also understood by extending this approach to PS-b-P4VP micellar thin films. The procedure used here is simple, eco-friendly, and compatible with the existing silicon-based technology. Also the method could be applied to various other block copolymer morphologies for generating 1-dimensional (1D) and 2-dimensional (2D) structures.  相似文献   

14.
We synthesize a non-sticky/sticky diblock copolymer, poly[styrene-b-3-(trimethoxysilyl)propylmethacrylate], to produce polymer brushes using the grafting-to technique. Uniform coatings of the polymer brushes are efficiently produced because of the multiple reactive groups offered by the sticky block, and the surface coverage and nanoscopic morphology of the brush layer are adjusted by varying the concentrations of the immersion polymer solutions and the immersion time of the substrate. The nanoscopic pattern of the polymer brushes is subsequently utilized to produce mixed polymer brushes. The resulting homo- or mixed polymer brushes change their nanoscopic morphology in response to external stimuli of temperature and solvent. The results indicate that grafting of the asymmetric non-sticky/sticky block copolymer is an efficient method for producing a surface of polymer brushes with nanoscopic chemical heterogeneity.  相似文献   

15.
Kaifu Luo  Yuliang Yang 《Polymer》2004,45(19):6745-6751
For asymmetric diblock copolymers under steady shear flow, the orientational phase transitions in the hexagonal cylinder phase and the kinetics of lamellar to hexagonal phase transition were studied based on the time-dependent Ginzburg-Landau approach. As to orientational phase transitions in the hexagonal cylinder phase, the simulation results show that the parallel orientation is stable at low shear rate and the perpendicular orientation is stable at high shear rate. In addition, different kinetic pathways of lamellar phase to hexagonal phase transition are observed after a sudden temperature jump from one phase to other. When the temperature jump is deep into the hexagonal phase from the shear-orientated lamellar phase under steady shear flow, the lamellae are transformed into hexagonally ordered cylinders directly via the short so-called modulated instability of the lamellar layers. However, if the temperature jump is only slight into the hexagonal phase with or without steady shear flow, lamellae are transformed into hexagonally ordered cylinders going through a distinct modulated and perforated lamellar phase stage. Moreover, without steady shear flow the perforated lamellar phase stage can survive for longer time, indicating that the steady shear flow cannot lead to stabilization of perforated lamellar phase. The simulation results also indicate that the perforated lamellar phase has abab…stacking.  相似文献   

16.
Michael R. Tomlinson 《Polymer》2008,49(22):4837-4845
We present methodologies for fabricating block copolymer assemblies grafted onto flat solid substrates, where each block of the copolymer possesses a systematic and gradual variation of molecular weight as a function of the position on the substrate. We demonstrate the utility of this technique on two case studies. In the first project, we generate surface-tethered poly[(2-hydroxyethyl methacrylate)-b-(methyl methacrylate)] (PHEMA-b-PMMA) diblock copolymer brushes and study systematically morphological transitions associated with collapsing either the top PMMA or the bottom PHEMA block while keeping the other block solvated. Scanning force microscopy studies of systems having the top block collapsed reveal the presence of either flat (F), or micellar (M) or bicontinuous (BC) morphologies, whose locus in the phase diagram agrees with theoretical predictions and results of computer simulations. The second case study demonstrates the extension of the deposition method to the case of surface-anchored triblock copolymer brushes. Specifically, we present results pertaining to the formation of poly[(2-hydroxyethyl methacrylate)-b-(methyl methacrylate)-b-(dimethylaminoethyl methacrylate)] brushes with independent variation of all three block lengths.  相似文献   

17.
Core-shell cylindrical polymer brushes with poly(t-butyl acrylate)-b-poly(n-butyl acrylate) (PtBA-b-PnBA) diblock copolymer side chains were synthesized via ‘grafting from’ technique using atom transfer radical polymerization (ATRP). The formation of well-defined brushes was confirmed by GPC and 1H NMR. Multi-angle light scattering (MALS) measurements on brushes with 240 arms show that the radius of gyration scales with the degree of polymerization of the side chains with an exponent of 0.57±0.05. The hydrolysis of the PtBA block of the side chains resulted amphiphilic cylindrical core-shell nanoparticles. In order to obtain a narrow length distribution of the brushes, the backbone, poly(2-hydroxyethyl methacrylate), was synthesized by anionic polymerization in addition to ATRP. The characteristic core-shell cylindrical structure of the brush was directly visualized on mica by scanning force microscopy (SFM). Brushes with 1500 block copolymer side chains and a length distribution of lw/ln=1.04 at a total length ln=179 nm were obtained. By choosing the proper solvent in the dip-coating process on mica, the core and the shell can be visualized independently by SFM.  相似文献   

18.
ABA‐type triblock copolymers derived from 4,4'‐(hexafluoroisopropylidene)diphthalicanhydride‐2,3,5,6‐tetramethyl‐1,4‐phenylenediamine (6FDA‐TeMPD) and methacryl phenyl polyhedral oligomeric silsesquioxane (MPPOSS) were synthesized by atom transfer radical polymerization. The chemical structure of the synthesized ABA‐type triblock copolymer was confirmed by 1H NMR, 13C NMR, 29Si NMR and Fourier transform infrared analyses. The ratios of 6FDA‐TeMPD and MPPOSS determined by TGA were 94/6, 85/15, 77/23, 68/32, 57/43 and 31/69. The film density of the ABA‐type triblock copolymer films did not conform to the mixing rule because of polyimide (PI) chain aggregation. Based on contact angle and water uptake analyses, the hydrophobicity of the ABA‐type triblock copolymer film was determined to be higher than the theoretical value because of POSS cage effects and PI chain aggregation. The gas permeability coefficient of the ABA‐type triblock copolymer decreased compared with that of PI because of aggregation of PI chains and inhibition of solubility decreases by substitutes with high affinity. ABA‐type triblock copolymer CO2/H2 separation performance increased compared with that of PI. The ABA‐type triblock copolymer derived from PI and MPPOSS can be described as a polymer material with higher hydrophobicity and higher CO2/H2 selectivity than PI. © 2015 Society of Chemical Industry  相似文献   

19.
We have used real-space self-consistent field theory to search possible morphology of an asymmetric AB diblock copolymer thin film confined between two homogeneous hard walls. The volume fraction of the A block is fixed to be f=0.3, as expected, a cylindrical phase is stable without confinement (in the bulk). Our simulation reveals that under confinement, in addition to parallel and perpendicular cylinders, other phases, such as flat lamellae, perforated lamellae, undulated cylinders and undulated lamellae, are also stable due to the block-substrate interactions. Three new structures, i.e. undulated lamellae, undulated cylinders and parallel cylinders with non-integer period, are observed to be stable with suitable film thickness and block-substrate interaction. By systematically varying the film thickness and the interaction parameters between the two blocks, phase diagrams are constructed for typical block-substrate interactions. We compare the phase diagrams for weak and strong substrate preference and discuss the effects of confinement and substrate preference on the stability of various structures.  相似文献   

20.
A polybutadiene19-block-poly(ethylene oxide)94 (PB-PEO) has been modified by free-radical additions of 2-ethylhexanethiol, 1-decanethiol, and 1-dodecanethiol separately to the PB block. The block copolymers were characterized by DSC, SAXS, XRD and AFM measurements. Above the melting temperature of PEO, PB-PEO showed hexagonal morphology having PB cylinders in the PEO matrix. The addition of alkyl side chains decreased the volume fraction of PEO and the morphology changed to lamellar for ethylhexyl side chains and to reversed hexagonal morphology with PEO cylinders in the PB/alkyl chain matrix for decyl and dodecyl side chains. Below the melting temperature of PEO, all polymers showed lamellar morphology. In the case of dodecyl side chains, the lamellar morphology oriented perpendicular to the air/film interface and was stable against high temperature annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号