首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对客车气制动系统动态响应研究不足的问题,运用计算机仿真建模技术,建立了制动系统关键部件全参数仿真模型。其关键部件包含制动阀、继动阀、膜片制动气室、气压管路。在数学推导的基础之上,引入了AMESim多领域仿真建模软件,避免了复杂的多变量、非线性的数学关系推导,模型可用于客车气制动系统多参数仿真模拟与设计。为验证模型的准确性,设计了一套整车制动模拟试验台,对气制动系统动态响应和各零件响应输出协调性进行试验验证。仿真结果与试验结果对比表明两者相吻合,并分析得出了气制动系统响应迟滞的主要因素为制动气室的橡胶膜片形变引起,为气压制动系统性能研究及匹配性分析奠定了基础。  相似文献   

2.
通过对气制动系统制动过程的分析,针对气制动系统中制动总阀及制动气室的工作状态,引入了物理建模的方法,建立了正常状态下的客车气压制动系统制动气室输出压力特性的模型。为验证该模型的准确性,采用四阶龙格-库塔方法,对所建立的模型进行了计算仿真,得到制动气室的输出压力曲线。与此同时,在与仿真相同的条件下利用整车气制动模拟试验台对制动气室的输出压力进行了测试,仿真结果与试验结果吻合性较好,表明所建立的客车气制动系统制动气室的输出压力模型能够较准确地描述制动气室输出压力变化特性,为气制动系统的理论研究提供了依据。  相似文献   

3.
制动气室是车辆气压制动回路的关键组成部分,其动态响应特性直接影响车辆气压制动系统性能,建立制动气室充气过程数学模型,并通过实验验证模型的正确性。将制动气室的流量特性方程、状态方程以及活塞盘的运动方程无因次化,得到制动气室无因次解析模型,仿真计算出气室压力响应和运动特性变化规律。研究结果表明:制动气室回位弹簧满载弹力、橡胶膜片的膜片力等参数均会对气室响应特性造成不同程度影响,其中回位弹簧满载弹力的影响程度最大,但不同参数下气室的充气时间基本保持恒定。  相似文献   

4.
推杆行程失调会引起客车制动力的损失,使制动力矩减小,针对此问题提出了一种诊断制动气室推杆行程失调故障的方法。分析了气制动系统中的制动总阀和制动气室的工作状态,利用模型对制动气室伸出推杆的行程值进行理论估计,通过判断估计值是否落在规定的推杆有效行程范围内,对系统是否存在推杆行程失调故障进行判断。然后搭建了整车气压制动系统模拟试验台,针对整车制动系统进行制动性能模拟试验,对制动气室的气压变化量进行测量,将归一化后的试验值与理论值进行比较,对气制动系统是否存在推杆行程失调进行了诊断。试验结果表明,该模型能很好地对气制动系统推杆行程失调进行故障诊断。  相似文献   

5.
根据客车气压制动系统,建立气室气体入口、气室内腔压力等关键部件的数学模型,参照国际标准搭建制动气室压力特性试验平台;通过试验与仿真,导出四种入口直径下的气室内腔压力、推杆位移等试验和仿真参数;从压力响应时间、系统节能、系统稳定性三个方面分析气室气体入口直径对压力特性的影响。试验和仿真数据结果具有良好的一致性,可为制动气室的分析与设计提供参考。  相似文献   

6.
建立了客车气压制动回路降压过程中制动气室、快放阀等主要部件的理论解析模型,依照国际标准设计了快放阀压力响应特性测试台架;分别通过仿真与试验,从压力响应时间和稳定性两个方面重点分析了快放阀排气口气隙大小和接口直径对压力响应特性的影响。通过对比分析,仿真结果和试验数据具有良好的一致性,验证了理论解析的正确性和试验设计的合理性,可作为气压制动回路设计与研究的参考。  相似文献   

7.
我国拖拉机挂车气制动执行机构主要采用膜片的制动气室,对其推力进行理论分析和试验研究后,得出膜片式制动气室推力不仅与几何尺寸和气压有关,还与工作行程有关。  相似文献   

8.
我国拖拉机挂车气制动系统执行机构主要采用膜片式制动气室,对拖拉机挂车机组气制动系的制动性能完全满足强制性国家标准GB16151-2008《农业机械运行安全技术条件》和GB7258-2004《机动车运行安全技术条件》中规定要求的膜片式制动气室有效承压面积进行理论分析和试验研究后,得出膜片式制动气室有效承压面积不仅与几何尺寸和气压有关,还与工作行程有关.试验按照国家行业标准JB/T9840.1-1998《拖拉机挂车气制动系统制动气室技术条件》进行,找到了膜片式制动气室有效承压面积的变化规律.膜片式制动气室有效承压面积不是一个固定不变的数值.指出了不同型式的膜片式制动气室推杆有效工作行程范围.  相似文献   

9.
面向商用车电控气压制动系统,研究综合考虑制动压力偏差与制动时间偏差的制动压力变化率,为实现电控气压制动系统精准制动控制提供基础。基于制动气室充气过程的数学模型,利用响应面法,得到制动压力变化率的关键影响因素,仿真分析关键影响因素对制动压力变化率的影响规律。通过制动压力变化率测量回路,实验验证仿真分析结果的正确性。研究结果表明:音速流导和供气压力对制动压力变化率的影响程度较大,其中,改变音速流导不仅影响制动压力变化率的大小,也影响制动压力变化率的响应时间。  相似文献   

10.
针对继动阀动态控制过程特性复杂、制动效果不精确等问题,以某客车继动阀为研究对象,基于继动阀的物理结构以及气动基础理论,引入了AMESim多领域仿真模型软件,建立继动阀AMESim动态模型,通过改变继动阀的输入气压、阀口直径、控制气压参数,进行仿真研究,分析其压力特性及响应特性,研究了可对继动阀动态响应特性产生影响的各个因素。进而建立气压制动系统整体AMESim模型,验证继动阀在整体中的作用及其正确性。为该部件的结构优化和阀体设计提供数据支持,进一步提高了气压制动系统的快速性。  相似文献   

11.
制动能量回收系统车辆制动工况研究   总被引:2,自引:0,他引:2  
分别对排量伺服系统和制动能量回收系统进行了数学建模,并在M/S环境下对整车制动工况进行了动态仿真.仿真结果表明,系统对驾驶员的响应迅速、平稳,最后通过试验验证了该模型的有效性,为进一步工作打下了基础.  相似文献   

12.
基于VABCO压力调节器气制动ABS系统,综合考虑温度、管路长度等彩响因素建立了制动气室压力变化数学模型;通过压力阶跃响应试验,频率特性试验和PWM调压试验分析了制动压力动态特性,证明了所建立的数学模型基本合理。为ABS控制逻辑的开发提供了理论依据。  相似文献   

13.
为了提高汽车气压ABS制动系统的安全性和可靠性,从气压ABS调节器的基本结构和工作特性入手,采用AMESim平台建立气压ABS调节器模型并对其调节特性进行分析,具体围绕共性能参数、制动气室压力变化的静态特性与动态特性进行研究。  相似文献   

14.
为了探究地铁车辆管路关键参数对气路系统初充风时间和制动系统响应时间的影响,以地铁车辆气路系统作为研究对象,利用AMESim仿真软件平台,依托其基于数学物理模型的可视图形化的建模方式和丰富的应用元件库,搭建了空气制动系统关键部件及系统整体的模型,分别仿真了不同管路直径参数条件下气路系统的初充风时间和制动系统的响应时间。在此仿真结果基础上,提出了针对提高该系统制动性能的管路直径参数优化方案。  相似文献   

15.
气压防抱死调压阀为制动系统压力控制的关键阀件,其调压特性会影响气压制动回路的延迟特性。现基于调压阀电磁-机械耦合特性,解析阀芯、膜片运动方程,并构建了调压阀AMESim仿真模型。以此分析调压阀的静、动态特性,获取了结构参数、控制信号等对压力调节特性的影响机理;通过数据拟合,定量分析了调压响应特性参数影响规律。仿真结果表明,管路直径对增压响应时间影响程度大于降压响应时间;膜片直径对降压时间影响程度较大;脉冲信号占宽比对动态压力调节特性影响较大。通过分析各参数对不同性能的影响可知,利用此模型可高效分析ABS调压阀调节特性;全面获取了调压阀性能参数,可为ABS控制策略优化提供数据支持;定量分析的数据结果可为优化气压制动系统响应时间提供依据。  相似文献   

16.
1台SY5190THB型混凝土泵车,出现驻车制动失灵现象。该泵车驻车制动系统由手制动阀、储气筒、差动阀、后桥制动气室以及继动阀组成,后桥配备S型凸轮鼓式制动器、膜片弹簧制动气室、自动间隙调整臂及差动阀等部件。如附图所示。  相似文献   

17.
针对客车气压制动系统制动距离过长的不足,找出制动延迟时间过长和后轮制动结构不合理的原因,提出一种优化方案。方案是基于电子机械制动系统的工作原理和优点对后轮制动部分进行优化,变气控气制动为电控气制动,具有改动较少、制动效果好和智能化程度高等优点。采用理论分析和仿真实验相结合的方法,分析电子机械制动系统和客车气压制动的缺点,详细介绍优化设计和采用ADAMS仿真软件仿真验证。仿真结果表明:优化后的制动系统缩短制动延迟时间,缩短制动距离,提高制动性能,达到优化效果。  相似文献   

18.
具有制动能量回收系统的车辆制动研究   总被引:2,自引:0,他引:2  
城市公交车辆具有行驶车速低和制动、起动频繁的特点,造成燃油过多的无为消耗。车辆制动性能应迅速、平稳。为此建立了从控制量到目标转速响应的系统动态响应模型,并在MATLAB/SIMULINK环境下对整车制动工况进行动态仿真,得到仿真结果,并进行试验验证,试验结果验证了该模型的合理性,为进一步工作打下理论基础。  相似文献   

19.
正弹簧制动气室是汽车制动系统的一部分,一般安装在汽车的驱动桥上,作用是为汽车提供制动力矩。组合式弹簧制动气室用于为车轮制动器提供制动驱动力,由两部分组成,如图1所示,膜片腔1用于行车制动;弹簧腔2用于辅助制动和驻车制动。其中弹簧腔部分特点是具有超行程功能,并设有机械式解除制动装置。储能缸体是弹簧腔中一个关键零件,其几何形状及尺寸如图2所示,材料为冷轧碳素钢板:A-2.5-GB/T13237-1991/SPCC-Q/  相似文献   

20.
以汽车复合制动气室驻车制动腔内的储能弹簧作为研究对象,介绍了驻车制动腔的结构组成和制动过程。通过分析复合制动气室的工作原理,提出了引起驻车制动失效的螺旋压缩储能弹簧的失效判断方法。利用气阀综合试验台测得的弹簧工作载荷和推杆行程的数据对失效判断方法加以验证。试验验证结果表明,该判断方法能够判别储能弹簧是否失效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号