首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
2.
The role of pyoverdin, the main siderophore in iron-gathering capacity produced by Pseudomonas aeruginosa, in bacterial growth in vivo is controversial, although iron is important for virulence. To determine the ability of pyoverdin to compete for iron with the human iron-binding protein transferrin, wild-type P. aeruginosa ATCC 15692 (PAO1 strain) and PAO pyoverdin-deficient mutants were grown at 37 degrees C in bicarbonate-containing succinate medium to which apotransferrin had been added. Growth of the pyoverdin-deficient mutants was fully inhibited compared with that of the wild type but was restored when pyoverdin was added to the medium. Moreover, when growth took place at a temperature at which no pyoverdin production occurred (43 degrees C), the wild-type PAO1 strain behaved the same as the pyoverdin-deficient mutants, with growth inhibited by apotransferrin in the presence of bicarbonate and restored by pyoverdin supplementation. Growth inhibition was never observed in bicarbonate-free succinate medium, whatever the strain and the temperature for growth. In vivo, in contrast to results obtained with the wild-type strain, pyoverdin-deficient mutants demonstrated no virulence when injected at 10(2) CFU into burned mice. However, virulence was restored when purified pyoverdin originating from the wild-type strain was supplemented during the infection. These results strongly suggest that pyoverdin competes directly with transferrin for iron and that it is an essential element for in vivo iron gathering and virulence expression in P. aeruginosa. Rapid removal of iron from [59Fe]ferritransferrin by pyoverdin in vitro supports this view.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
A class of mutants in Pseudomonas aeruginosa have been found that are tolerant to aeruginocin 41 and also hypersensitive to aminoglycosides. They do not show any changes in susceptibility to a wide range of other toxic agents, including antibiotics and surfactants. This tol locus, tolA, has been mapped at 10 min from the FP2 origin and linked to carA (carbamyl phosphate synthetase) by transduction and conjugation. By selecting for revertants of the hypersensitivity phenotype, revertants to tol(+) were found, indicating that it is the tolA locus that is responsible for this specific hypersensitivity. The results indicate that a specific mechanism exists for the intrinsic resistance of P. aeruginosa to aminoglycosides.  相似文献   

12.
The ampD and ampE genes of Pseudomonas aeruginosa PAO1 were cloned and characterized. These genes are transcribed in the same orientation and form an operon. The deduced polypeptide of P. aeruginosa ampD exhibited more than 60% similarity to the AmpD proteins of enterobacteria and Haemophilus influenzae. The ampD product transcomplemented Escherichia coli ampD mutants to wild-type beta-lactamase expression.  相似文献   

13.
14.
15.
16.
17.
We studied the effect of the nitric oxide synthase (NOS) inhibitor asymmetric dimethyl arginine (ADMA) and the inactive enantiomer N G-methyl-D-arginine (D-NMMA) on Pseudomonas aeruginosa infection of the respiratory mucosa in nasal turbinate organ cultures. We also investigated the effect of P. aeruginosa culture filtrate on the expression of inducible NOS (iNOS) messenger RNA (mRNA) by an epithelial cell line (A549). Organ cultures were preincubated with ADMA (0.1 to 4 x 10(-4) M) or D-NMMA (2 x 10(-4) M) for 30 min prior to bacterial infection. Infected organ cultures (8 h) had significantly (P <= 0.05) greater epithelial damage and fewer ciliated and unciliated cells than did control cultures. There was an increased level of nitrite in the medium feeding infected organ cultures as compared with control cultures. ADMA significantly (P <= 0.05) reduced both bacterially induced epithelial damage and loss of ciliated cells in a concentration-dependent manner. D-NMMA did not influence the effect of P. aeruginosa infection of the mucosa. ADMA, but not D-NMMA, significantly (P <= 0.04) reduced total bacterial numbers adherent to the respiratory mucosa. P. aeruginosa culture filtrates (24 h and 36 h) significantly (P = 0.02) increased iNOS with respect to glyceraldehyde-3-phosphate dehydrogenase mRNA expression. These results show that P. aeruginosa stimulates iNOS expression by a cell line and NO production by an organ culture. ADMA reduces mucosal damage and loss of ciliated cells, which suggests that NO may be a mediator of epithelial damage caused by P. aeruginosa.  相似文献   

18.
Recent studies have provided evidence to implicate involvement of the core oligosaccharide region of Pseudomonas aeruginosa lipopolysaccharide (LPS) in adherence to host tissues. To better understand the role played by LPS in the virulence of this organism, the aim of the present study was to clone and characterize genes involved in core biosynthesis. The inner-core regions of P. aeruginosa and Salmonella enterica serovar Typhimurium are structurally very similar; both contain two main chain residues of heptose linked to lipid A-Kdo2 (Kdo is 3-deoxy-D-manno-octulosonic acid). By electrotransforming a P. aeruginosa PAO1 library into Salmonella waaC and waaF (formerly known as rfaC and rfaF, respectively) mutants, we were able to isolate the homologous heptosyltransferase I and II genes of P. aeruginosa. Two plasmids, pCOREc1 and pCOREc2, which restored smooth LPS production in the waaC mutant, were isolated. Similarly, plasmid pCOREf1 was able to complement the Salmonella waaF mutant. Sequence analysis of the DNA insert of pCOREc2 revealed one open reading frame (ORF) which could code for a protein of 39.8 kDa. The amino acid sequence of the deduced protein exhibited 53% identity with the sequence of the WaaC protein of S. enterica serovar Typhimurium. pCOREf1 contained one ORF capable of encoding a 38.4-kDa protein. The sequence of the predicted protein was 49% identical to the sequence of the Salmonella WaaF protein. Protein expression by the Maxicell system confirmed that a 40-kDa protein was encoded by pCOREc2 and a 38-kDa protein was encoded by pCOREf1. Pulsed-field gel electrophoresis was used to determine the map locations of the cloned waaC and waaF genes, which were found to lie between 0.9 and 6.6 min on the PAO1 chromosome. Using a gene-replacement strategy, we attempted to generate P. aeruginosa waaC and waaF null mutants. Despite multiple attempts to isolate true knockout mutants, all transconjugants were identified as merodiploids.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号