共查询到20条相似文献,搜索用时 0 毫秒
1.
Global mass transfer measurements in unbaffled and baffled configurations using different baffle lengths and Reynolds numbers have been made in a parallel plate cell of rectangular geometry. The entry jet arrangement and the repeated 180° changes in direction of the flow, followed by the exit, produces extremely complex hydrodynamics in the cell. A plot of mass transfer coefficient against baffle length shows an increase in mass transfer with baffle length. Comparison of data for the present work with those of other workers for similar devices showed higher mass transfer due to the modifications incorporated in the present cell. 相似文献
2.
Studies of combined natural and forced convection in a vertical parallel plate electrochemical cell in laminar conditions in cases of opposing and aiding flow are reported. In an ongoing project it was necessary to identify conditions in which natural convection had no significant influence on mass transfer rates at the cell walls so that data could be validly compared with purely laminar flow computational models. For the different electrode lengths investigated, natural convection dominated at low Reynolds number and there was no Reynolds number dependence. At high Reynolds number the data approached the laminar flow solution. At intermediate Reynolds number, however, there existed a distinct region where free and forced convection were significant. At high electrolyte concentrations data did not merge with laminar flow equations until Re=1000 and low electrolyte concentration data for the large plate could not be compared with numerical predictions below Re of 250. An attempt was made to compare the data with those of other workers on combined forced and natural convection heat and mass transfer. 相似文献
3.
A parallel-plate reactor model is developed for the Kolbe electrolysis of acetate to ethane and carbon dioxide with hydrogen evolution as the counterelectrode reaction. The parallel-plate reactor is considered to consist of three zones: a turbulent bulk region in which streamwise convection is the dominant mass-transport mechanism (plug-flow model) and a thin diffusion layer at each electrode where diffusion and migration mass transport are dominant (Nernst diffusion-layer model). The acetic acid solution is supported with sodium hydroxide, and the reactor is under steady cell-potential control. Gaseous products are tracked by a hypothetical gas layer which increases in thickness in the streamwise direction. The gas phase is assumed to be an ideal, three-component mixture of hydrogen, carbon dioxide and ethane; the liquid phase consists of acetate, proton, acetic acid, and sodium and hydroxyl ions. The model predicts streamwise profiles of concentration, current density, gas-void fraction, and gas and liquid velocities in addition to reactant conversion, and cell-polarization characteristics. The average current density exhibits a maximum at a base-to-acid ratio of 0.96 due to the weak-acid/strong-base chemistry and a broad maximum at an interelectrode spacing of 0.37 cm resulting from minimized ohmic losses. 相似文献
4.
G. Nelissen B. Van Den Bossche J. Deconinck A. Van Theemsche C. Dan 《Journal of Applied Electrochemistry》2003,33(10):863-873
Laminar and turbulent mass transfer in a parallel plate reactor at high Schmidt number obtained from numerical simulation is compared with literature data. In a first step, the fluid flow is determined numerically in the reactor by solving the Navier–Stokes equations. For turbulent flow, a low Reynolds number k— model is used to calculate the turbulent viscosity. Using the obtained flow field and turbulent viscosity, the current density distribution is calculated for different flow velocities by solving the equations describing the transport of multiple ions due to diffusion, convection and migration. For the laminar case, a very good agreement with literature data is obtained. For turbulent flow, different numerical models for turbulent mass transfer are proposed in the literature. A detailed study of the behaviour close to the wall of these different turbulence models is presented, together with a comparison of the calculated results with literature correlations. This allows identification of the benefits and disadvantages of each of the turbulence models for the numerical calculation of mass transfer at high Schmidt numbers in a parallel plate reactor. 相似文献
5.
6.
Particle-liquid mass transfer in a three phase sparged reactor has been studied over a wide range of particle sizes, for the chum-turbulent regime. The particle-liquid Sherwood number has been correlated in the usual form with the Reynolds and Schmidt numbers. Use of the hindered particle settling velocity in the Reynolds number yields good agreement (±20%) with the present as well as most of the literature data. The proposed correlation also holds for power law non-Newtonian liquids when the effective viscosity is used. 相似文献
7.
Experiments were conducted in a modified reversed flow jet loop reactor having the liquid outlet at the top of the reactor to determine the gas holdup and overall volumetric mass transfer coefficient in the air-water system. The influence of gas and liquid flow rates, and the draft tube to reactor diameter ratio were studied. It was observed that both gas holdup and volumetric mass transfer coefficient increased with increased gas and liquid flow rates and were found to be significantly higher in the modified reactor compared to the conventional one. The optimum draft tube to reactor diameter ratio was found to be in the range of 0.4 to 0.5. Empirical correlations are presented to predict gas holdup and overall volumetric mass transfer coefficient in terms of operational and geometrical variables. 相似文献
8.
气升式外环流反应器的体积传质系数 总被引:1,自引:0,他引:1
以Higbie的渗透理论和Kolmogoroff的湍流理论为基础,提出了计算液体旋涡在气液相界面暴露时间的方法,并建立了预测体积传质系数的模型方程。在不同管径比下的外环流反应器中,对空气 水体系测定了操作气速对体积传质系数、循环液速和气含率的影响。将体积传质系数与表观气速和下降管与上升管的面积比按幂函数进行关联,其预测值和试验值符合较好。 相似文献
9.
Experimental investigations have been made of ionic mass transfer in a parallel plate electrochemical cell under both laminar and turbulent flow. The results obtained in the laminar flow region were found to be well represented by a Leveque-type equation modified to include the cell aspect ratio as an additional parameter. The influence of decreased mass transfer at the edges of the electrodes due to changes in the velocity profile was found to be small. For the turbulent region, there is a correlation of the mass transfer coefficient with Reynolds number to an exponent of 0.875 and Schmidt number to exponent of 0.21. This is in accord with existing correlations for heat and mass transfer in similar geometries over the range studied. 相似文献
10.
A.A. Mobarak M.S.E. Abdo M.S.M. Hassan G.H. Sedahmed 《Journal of Applied Electrochemistry》2000,30(11):1269-1276
Rates of mass transfer were studied at a vertical array of closely packed screens under single and two phase (gas–liquid) flow by measuring the limiting current for the cathodic reduction of ferricyanide ions. Variables studied were screen characteristics (mesh number and wire diameter), physical properties of the solution, solution flow rate, gas flow rate and the effect of surface active agents. The single phase data were correlated by the equation:J = 0.52 ReL-0.55while the two phase data were correlated by the equations:Sh=0.87 Sc0.33 ReL0.35 Reg0.12for the conditions 10 < Re < 125 and 1.4 < Reg < 77; andSh=0.62 Sc0.33ReL0.11Reg0.25for the conditions 1.1 < ReL < 22 and 1.4 < Reg < 77. The presence of surfactant was found to reduce the rate of mass transfer in both single phase and two phase flow, the percentage reduction being higher in the case of single phase flow. 相似文献
11.
Amir Masoud Jamshidi Morteza Sohrabi Farzaneh Vahabzadeh Babak Bonakdarpour 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2001,76(1):39-46
The effects of certain pertinent parameters such as gas and liquid flow rates and nozzle position on the behavior of a down‐flow jet loop reactor (DJR) have been studied. The mean residence times of gas and liquid phases and the gas holdup within the reactor have been measured. In addition, the overall volumetric mass transfer coefficient, and the influence of the gas flow rate and the position of the nozzle inside the draft tube on the latter has been determined. Correlations have been presented for the gas holdup and kLa which take into account the length of the draft tube and the nozzle immersion height. The kLa values obtained at different power per unit volume (P/V) values in the DJR used in the present study compare favorably with data presented for stirred tanks and bubble columns in the literature. The liquid residence time distribution (RTD) within the reactor has been studied by tracer analysis for various operating conditions and nozzle immersion height and the results are indicative of the high mixing intensities that can be obtained in such reactions. © 2001 Society of Chemical Industry 相似文献
12.
G. H. Sedahmed 《加拿大化工杂志》1996,74(4):487-492
Mass transfer rates were determined at a horizontal screen cathode stirred by oxygen bubbles evolved at a horizontal anode placed below the screen by measuring the limiting current of the cathodic reduction of ferricyanide ion from alkaline solution. Variables studied were oxygen discharge rate, ferricyanide concentration and number of closely packed screens forming the cathode. For a single screen cathode the data were correlated by the equation: J = 0.249 (Re Fr)-0.25 The mass transfer coefficient was found to decrease with increasing the number of screens forming the cathode. Implications of the present work for improving the performance of the flow-through packed bed electrochemical reactor were highlighted. 相似文献
13.
Young H. Park Moon H. Han Hyun-Ku Rhee 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》1984,34(1):57-69
A mathematical model was developed to describe the effect of external mass transfer for a packed-bed enzyme reactor in which a reversible, one-substrate, two-intermediate enzyme reaction took place. The model equation was applied to the analysis of an immobilized glucose isomerase reactor system. A Colburn-type mass transfer correlation was obtained from the Colburn j-factor versus Reynolds number plot: i.e., jD = 0.045NRe−0.48. The values of mass transfer coefficient for the system under study ranged from 0.01 to 0.1 cm h−1 depending on the substrate flow rate. Very good agreements were observed between the computer simulation using a plug flow reactor model with the derived mass transfer correlation and the experimental results obtained from the packed-bed reactor operation. 相似文献
14.
In a series of two papers the results of investigating the mass transfer characteristics of two gas-liquid reciprocating plate columns of the Karr type by different methods are presented. The subject of the first part is a study of the liquid phase volumetric mass transfer coefficient, kLa, while the second part deals with the interfacial area. The volumetric coefficient kLa was investigated using the sulphite method, the pure physical absorption of oxygen, and a dynamic method under culture conditions, the second of these three methods being the most favorable. Very good agreement among these methods was found. Generally, kLa increased with increasing vibration intensity, superficial gas velocity, and the number of perforated plates. Liquid-phase properties appeared to affect kLa only slightly. The coefficient kLa was correlated in terms of the maximum power consumption and the superficial gas velocity: 相似文献
15.
Wang Bang Iordan Nikov Hami Delmas Aim Bascoul 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》1998,72(2):137-142
The gas–liquid mass transfer performances of a novel three-phase reactor involving both airlift and mechanical stirring have been tested using aqueous solutions of glucose. Stirring in addition to classical airlift leads to an importance increase of kLa. The absolute increase depends mainly on the stirrer speed are not on the gas velocity. A slight effect of the solid loading with a maximum at about 2% (w/v) was observed. Two correlations that show the influence of physical parameters are proposed for both water and glucose solutions. © 1998 SCI 相似文献
16.
The contribution of local regions to global mass transfer holds the key to optimization and scale-up of a reactor. Extensive study has been conducted to investigate gas-liquid mass transfer occurring in the internal airlift loop reactor, but mostly restricted to global mass transfer performance. A cold model forced circulation internal airlift loop reactor was employed and divided into six regions in which dissolved oxygen concentration in slurry and mass transfer interfacial area were measured respectively. Different models were utilized to calculate volumetric mass transfer coefficient. Contributions of individual region to global mass transfer performance were calculated and compared. It was found that mass transfer coefficient and mass transfer interfacial area of individual region increases with increasing superficial gas velocity and slurry feed flowrate. The feed affected region has the greatest mass transfer coefficient and volumetric mass transfer coefficient, contributing more than 30% to global mass transfer in most operating condition. Mass transfer interfacial area is close in the gas distributor region, feed affected region and the gas-slurry separator region. In the present work, circulating bubbles are rare and contribute negligibly to the global mass transfer. Global volumetric mass transfer coefficient is close to that of the gas-slurry separator region, ranging from 0.02 to 0.1 1/s. Comparison of kLa is made between this work and literatures, suggesting a great improvement of mass transfer due to external liquid circulation. 相似文献
17.
Clara‐Tatiana Gonzalez‐Hidalgo Joan Herrero Dolors Puigjaner 《American Institute of Chemical Engineers》2015,61(3):1015-1031
The flow and mass transfer in a discontinuous reactor configuration consisting of a pair of corotating enclosed disks with a chemical reaction taking place at the disk surfaces have been analyzed. The calculated mass‐transfer efficiencies do not follow the expected dependence because the overall mass‐transfer process is not boundary‐layer controlled, especially at high Schmidt numbers. It has been found in all of the cases investigated that despite the fact that the reactant concentration is continuously dropping with time its spatial distribution, relative to the volume‐averaged value, becomes stationary after a short initial transient. This result implies that the mass‐transfer efficiency in the discontinuous reactor also becomes stationary and the resulting time‐independent value, , obtained either directly from calculation or from the fit of the collected results, provides a fairly good estimate of the reactor operation time needed to achieve the target reactant conversion. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1015–1031, 2015 相似文献
18.
Effects of the sieve plate on hydrodynamics and mass transfer in an annulus sparged airlift reactor (0.08 m3, 1.3 m tall, and 0.284 m in diameter) were investigated. It is found that the sieve plate can significantly enhance gas holdup and volumetric mass transfer coefficient. The sieve pore plays an important role in breaking up bubbles. With a given free area ratio, the sieve plate with a larger sieve pore diameter is more efficient in increasing the volumetric mass transfer coefficient. Four different free area ratios between 37% and 73% are tested, and then an optimal free area ratio is determined. The effect of the sieve plate is found to be related to sparger types. The sieve plate leads to a larger increase of volumetric mass transfer coefficient with the O-ring distributor as compared to the 4-orifice nozzle. Empirical correlations and a hydrodynamic model are proposed to predict gas holdup, volumetric mass transfer coefficient and liquid velocity in airlift reactors with sieve plates. 相似文献
19.
The gas-liquid mass transfer in two-phase flow through a capillary has been measured for water-air, ethanol-air and ethylene glycol-air systems. A semi-theoretical model has been developed and compared with experimental results. and a full computer simulations of the flow pattern and mass transfer using a flow simulation program have been made. The measured values are about 30% less than the calculated values. 相似文献
20.
In this work, the hydrodynamics and mass transfer in a gas–liquid dual turbine stirred tank reactor are investigated using multiphase computational fluid dynamics coupled with population balance method (CFD–PBM). A steady state method of multiple frame of reference (MFR) approach is used to model the impeller and tank regions. The population balance for bubbles is considered using both homogeneous and inhomogeneous polydispersed flow (MUSIG) equations to account for bubble size distribution due to breakup and coalescence of bubbles. The gas–liquid mass transfer is implemented simultaneously along with the hydrodynamic simulation and the mass transfer coefficient is obtained theoretically using the equation based on the various approaches like penetration theory, slip velocity, eddy cell model and rigid based model. The CFD model predictions of local hydrodynamic parameters such as gas holdup, Sauter mean bubble diameter and interfacial area as well as averaged quantities of hydrodynamic and mass transfer parameters for different mass transfer theoretical models are compared with the reported experimental data of
[Alves et al., 2002a]
and
[Alves et al., 2002b]
. The predicted hydrodynamic and mass transfer parameters are in reasonable agreement with the experimental data. 相似文献