首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Escherichia coli O157:H7 survival in apple juice supplemented with Cornus fruit (Cornus officinalis Sieb. et Zucc.) extract was studied. Inoculated samples with or without Cornus fruit extract were kept at 21 and 7 degrees C. Microbial analysis was conducted on days 0, 1, 3, 5, and 7. MacConkey sorbitol agar (MSA), tryptic soy agar (TSA), and thin agar layer (TAL) medium were used to compare the recovery of bacteria stressed under combination treatment. Influence of temperature, storage time, and Cornus fruit on survival of cells was evaluated. The most dramatic reduction of E. coli O157:H7 was observed in apple juice with Cornus fruit extract at 21 degrees C. At 7 degrees C, E. coli O157:H7 was reduced by 2.3logcfu/ml in the apple juice with Cornus fruit extract compared to the control sample on day 7. TAL and TSA were more efficient than MSA. Cornus fruit extract can be used in combination with temperature and storage time controls to inactivate E. coli O157:H7 in apple juice. This study has shown that TAL is a viable method of recovering and differentiating injured microorganisms and apple juice supplemented with Cornus fruit has potential as a value-added beverage with antimicrobial effects and potential health benefits.  相似文献   

2.
A new medium (Escherichia coli O157:H7 medium: EOH) was developed for differentiation between E. coli and E. coli O157:H7. The EOH medium was compared with sorbitol MacConkey agar (SMAC), which is the most popular medium to enumerate E. coli O157:H7. Several combinations of 35 dyes were evaluated to develop the new medium. Indigo carmine (0.03) g/liter) and phenol red (0.036 g/liter) were found as the best combination for differentiation between E. coli O157:H7 and E. coli and added to the basal agar medium (SMAC medium excluding neutral red and crystal violet) for EOH medium. On the dark blue EOH medium, E. coli produced a yellow color with clear zone, whereas E. coli O157:H7 produced a red color without clear zone. For differentiation between E. coli and E. coli O157:H7, EOH has much better potential than SMAC. Furthermore. the red color produced by normal E. coli in SMAC may mask the light gray color produced by E. coli O157: H7, whereas the yellow color with clear zone did not mask the red color without clear zone in the EOH medium. The recovery numbers of E. coli O157:H7 from inoculated ground beef, pork, and turkey were not significantly different between SMAC and EOH media (P > 0.05). The recovery rates of heat- and cold-injured E. coli O157:H7 also were not significantly different (P > 0.05).  相似文献   

3.
Reliable methods are required for the detection and enumeration of potentially injured E. coli O157 in food in the presence of outnumbering competing bacteria. Selective agents can prevent or inhibit the recovery and subsequent multiplication of injured cells and direct inoculation, either into selective enrichment broths or onto selective agar plates is still used in many methods for E. coli O157 detection and enumeration. When compared with tryptone soya agar (TSA), sorbitol MacConkey agar (SMAC) was shown to underestimate the concentration of viable E. coli O157:H7 subjected to low pH and high NaCl concentration. Using a resuscitation stage on TSA followed by membrane transfer to SMAC improved recovery to levels obtained on TSA. The membrane method was used to monitor the numbers of artificially contaminated E. coli O157:H7 during the fermentation of a meat product and demonstrated better survival when compared to counts on SMAC. Six rapid methods for the detection of E. coli O157 in food (BAX E. coli O157, Reveal 8 E. coli O157-H7 screening test, VIP EHEC, VIDAS E. coli O157 (ECO), EHEC-Tek and Tecra E. coli O157 visual immunoassay), were evaluated using beetburgers, parsley and fermented meat artificially contaminated with injured cells. Methods using direct selective enrichment, with or without an elevated incubation temperature gave false-negative results. The incorporation of a non-selective pre-enrichment medium improved the detection rates of these assays by up to ten fold.  相似文献   

4.
The direct detection and estimation of concentration of Escherichia coli O157:H7 down to 1 CFU/g of cheese was achieved by conventional plating techniques. Cheese was manufactured with unpasteurized milk inoculated with E. coli O157: H7 at 34 +/- 3 CFU/ml. The numbers of E. coli O157:H7 were monitored during cheese ripening by plating on sorbitol MacConkey agar supplemented with cefixime and potassium tellurite (CT-SMAC) and on CT-O157:H7 ID medium. Using the pour plate method, E. coli O157:H7 colonies could easily be distinguished from non-O157:H7 colonies on CT-O157:H7 ID medium but not on CT-SMAC. Higher numbers of E. coli O157:H7 were detectable with O157:H7 ID medium. Latex agglutination and PCR were used to confirm the identification of typical E. coli O157:H7 colonies, and nontypical colonies as not being E. coli O157:H7. As few as 1 CFU/g of cheese could be detected. E. coli O157:H7 also was detected in deliberately contaminated milk at concentrations as low as 4 CFU/10 ml.  相似文献   

5.
Survival and growth of Escherichia coli O157:H7 and Listeria monocytogenes in strawberry juice and acidified media at different pH levels (pH 3.4 to 6.8) and temperatures were studied. Sterile strawberry juice (pH 3.6) and acidified trypticase soy broth (TSB) media (pH 3.4 to 6.8) were inoculated with approximately 6.7 log CFU/ml E. coli O157:H7 or 7.3 log CFU/ ml L. monocytogenes, incubated for 3 days at 4 and 37 degrees C. Bacterial levels were determined after 2 h, 1 day, and 3 days using surface plating nonselectively on tryptic soy agar and selectively on sorbitol MacConkey agar for E. coli O157:H7 or modified Oxford agar for L. monocytogenes. A spectrophotometer (660 nm) was also used to study growth inhibition of L. monocytogenes in different TSB and strawberry juice media (pH 3.4 to 7.3). E. coli O157:H7 survived well at pH values of 3.4 to 6.8 at 4 degrees C, but the number of injured cells increased as pH decreased and incubation time increased. At 37 degrees C, E. coli O157:H7 was inactivated at pH of < or = 3.6 but could grow at pH 4.7. L. monocytogenes was quickly injured at pH of < or = 4.7 within 2 h of storage at 4 degrees C and then was slightly and gradually inactivated as storage time increased. L. monocytogenes survived well at pH 6.8 at 4 degrees C and grew well at 37 degrees C. Growth of L. monocytogenes at 37 degrees C was inhibited in TSB by 1% citric acid and 0.5% malic acids at pH 3.4 or by 50% strawberry juice at pH 4.7. Bacterial injury and inactivation appeared to be induced by the acids in strawberry juice. The acids, pH value, temperature, and time were important factors for bacterial survival, inactivation, and growth in the media tested.  相似文献   

6.
The survival of Escherichia coli O157:H7 and of a nonpathogenic control strain of E. coli was monitored in raw ground beef that was stored at 2 degrees C for 4 weeks, -2 degrees C for 4 weeks, 15 degrees C for 4 h and then -2 degrees C for 4 weeks, and -20 degrees C. Irradiated ground beef was inoculated with one E. coli control strain or with a four-strain cocktail of E. coli O157:H7 (ca. 10(5) CFU/g), formed into patties (30 to 45 g), and stored at the appropriate temperature. The numbers of the E. coli control strain decreased by 1.4 log 10 CFU/g, and pathogen numbers declined 1.9 log 10 CFU/g when patties were stored for 4 weeks at 20 degrees C. When patties were stored at -2 degrees C for 4 weeks, the numbers of the E. coli control strain and the serotype O157:H7 strains decreased 2.8 and 1.5 log 10 CFU/g, respectively. Patties stored at 15 degrees C for 4 h prior to storage at -2 degrees C for 4 weeks resulted in 1.6 and 2.7 log 10-CFU/g reduction in the numbers of E. coli and E. coli O157:H7, respectively. Storage of retail ground beef at 15 degrees C for 4 h (tempering) did not result in increased numbers of colony forming units per gram, as determined with violet red bile, MRS lactobacilli, and plate-count agars. Frozen storage (-20 degrees C) of ground-beef patties that had been inoculated with a single strain of E. coli resulted in approximately a 1 to 2 log 10-CFU/g reduction in the numbers of the control strain and individual serotype O157:H7 strains after 1 year. There was no significant difference between the survival of the control strain and the O157:H7 strains, nor was there a difference between O157:H7 strains. These data demonstrate that tempering of ground-beef patties prior to low-temperature storage accelerated the decline in the numbers of E. coli O157:H7.  相似文献   

7.
Pasteurized apple juice with nisin (0, 25, 50, 100, and 200 ppm, wt/vol) and cinnamon (0 and 0.3%, wt/vol) was inoculated with Salmonella Typhimurium and Escherichia coli O157:H7 at 10(4) CFU/ml and stored at 5 and 20 degrees C. Counts on tryptic soy agar (TSA), selective medium (xylose Lysine desoxycholate agar for Salmonella Typhimurium, and MacConkey sorbitol agar for E. coli O157:H7), and thin agar layer (TAL) were determined at 1 h and 1, 3, 7, and 14 days. The TAL method (selective medium overlaid with TSA) was used for recovery of sublethally injured cells. The pathogens were gradually inactivated by the acidic pH of apple juice. Nisin and cinnamon greatly contributed to the inactivation. The killing effect was more marked at 20 degrees C, with counts in all treated samples being undetectable by direct plating in 3 days for Salmonella Typhimurium and 7 days for E. coli O157:H7. Thus, several factors influenced the decrease in counts: low pH, addition of nisin and cinnamon, and storage temperature. The TAL method was as effective as TSA in recovering injured cells of the pathogens. The combination of nisin and cinnamon accelerates death of Salmonella Typhimurium and E. coli O157:H7 in apple juice and so enhances the safety of the product.  相似文献   

8.
The objective of this study was to determine the survival and growth characteristics of Escherichia coli O157:H7 in whey. A five-strain mixture of E. coli O157:H7 was inoculated into 100 ml of fresh, pasteurized or unpasteurized Cheddar cheese whey (pH 5.5) at 10(5) or 10(2) CFU/ml, and stored at 4, 10 or 15 degrees C. The population of E. coli O157:H7 (on Sorbitol MacConkey agar supplemented with 0.1% 4-methylumbelliferyl-beta-D-glucuronide) and lactic acid bacteria (on All Purpose Tween agar) were determined on days 0, 1, 4, 7, 14, 21 and 28. At all storage temperatures, survival of E. coli O157:H7 was significantly higher (P<0.01) in the pasteurized whey compared to that in the unpasteurized samples. At 10 and 15 degrees C, E. coli O157:H7 in pasteurized whey significantly (P<0.05) increased during the first week of storage, followed by a decrease thereafter. However at the same temperatures, E. coli O157:H7 exhibited a steady decline in the unpasteurized samples from day 0. At 4 degrees C, E. coli O157:H7 did not grow in pasteurized and unpasteurized whey; however, the pathogen persisted longer in pasteurized samples. At all the three storage temperatures, E. coli O157:H7 survived up to day 21 in the pasteurized and unpasteurized whey. The initial load of lactic acid bacteria in the unpasteurized whey samples was approximately 7.0 log10 CFU/ml and, by day 28, greater than 3.0 log10 CFU/ml of lactic acid bacteria survived in unpasteurized whey at all temperatures, with the highest counts recovered at 4 degrees C. Results indicate the potential risk of persistence of E. coli O157:H7 in whey in the event of contamination with this pathogen.  相似文献   

9.
The effects of chlorine dioxide (ClO2) gas concentration (0.1 to 0.5 mg/liter), relative humidity (RH) (55 to 95%), treatment time (7 to 135 min), and temperature (5 to 25 degrees C) on inactivation of Escherichia coli O157:H7 on green peppers were studied using response surface methods. A four-factor, central, composite, rotatable design was used. The microbial log reduction was measured as a response. A direct membrane-surface-plating method with tryptic soy agar and sorbitol MacConkey agar was used to resuscitate and enumerate ClO2-treated E. coli O157:H7 cells. The statistical analysis and the predictive model developed in this study suggest that ClO2 gas concentration, treatment time, RH, and temperature all significantly (P < 0.01) increased the inactivation of E. coli O157:H7. ClO2 gas concentration was the most important factor, whereas temperature was the least significant. The interaction between ClO2 gas concentration and RH indicated a synergistic effect. The predictive model was validated, and it could be used to determine effective ClO2 gas treatments to achieve a 5-log reduction of E. coli O157:H7 on green peppers.  相似文献   

10.
Three stains of Escherichia coli O157:H7, including ATCC 43889, ATCC 43895, and 933, were first subjected to acid adaptation at a pH of 5.0 for 4 h. Thermal tolerance at 52 degrees C and survival of the acid-adapted as well as the nonadapted cells of E. coli O157:H7 in the presence of 10% sodium chloride, 0.85% bile salt, or 15.0% ethanol were investigated. Results showed that the effect of acid adaptation on the survival of E. coli O157:H7 varied with the strains and types of subsequent stress. Acid adaptation caused an increase in the thermal tolerance of E. coli O157:H7 ATCC 43889 and ATCC 43895, but no significant difference in the thermal tolerance was noted between acid-adapted and nonadapted cells of E. coli O157:H7 933. Although the magnitude of increase varied with strains of test organisms, acid adaptation generally led to an increase in the tolerance of E. coli O157:H7 to sodium chloride. On the other hand, the susceptibility of acid-adapted cells of the three strains of E. coli O157:H7 tested did not show a significant difference from that of their nonadapted counterparts when stressed with bile salt. The acid-adapted cells of E. coli O157:H7 ATCC 43889 and ATCC 43895 were less tolerant than the nonadapted cells to ethanol, whereas the tolerance of adapted and nonadapted cells of E. coli O157:H7 933 showed no significant differences.  相似文献   

11.
4 株E. coli O157:H7毒力基因检测及其冷应激损伤   总被引:2,自引:0,他引:2  
水新云  王虎虎  高峰  江芸 《食品科学》2016,37(4):176-180
采用多重聚合酶链式反应对4 株大肠埃希氏菌O157:H7(Escherichia coli O157:H7)进行毒力特性评价,研究3 种常用选择性生长基质对E.coli O157:H7的精确定量对比,筛选出的适宜选择性培养基用于冷应激时菌体损伤的研究。结果显示,菌株CICC 21530的stx1、stx2、eae基因均为阳性,NCTC 12900和牛肉分离菌1的eae呈现阳性,牛肉分离菌2三种毒力基因均为阴性,表明4 株菌的致病性不同;4 株测试菌在改良山梨醇麦康凯琼脂(cefiximetelluritesorbitol macconkey agar,CT-SMAC)上计数均显著低于胰蛋白胨大豆琼脂(tryptose soya agar,TSA)上计数(P<0.05),而SMAC和改良伊红美蓝琼脂(modified eosin methylene blue agar,mEMB)上的计数与TSA相比无显著性差异,表明改良SMAC对正常菌体既有较强抑制作用,不适合用于E. coli O157:H7的精确计数,可以选用SMAC或mEMB;进一步以SMAC和mEMB作为选择性培养基研究菌体在4 ℃冷应激时的损伤情况,结果表明冷藏过程中SMAC、mEMB及TSA上的菌数均逐渐下降,第10天时4 株菌均发生了一定程度的损伤或死亡。本方法可为食品安全中E. coli O157:H7的定量评估和风险控制提供科学依据。  相似文献   

12.
The effect of a high-pressure treatment on the survival of a pressure-resistant strain of Escherichia coli O157:H7 (NCTC 12079) in orange juice during storage at 3 degrees C was investigated over the pH range of 3.4 to 5.0. The pH of shelf-stable orange juice was adjusted to 3.4, 3.6, 3.9, 4.5, and 5.0 and inoculated with 10(8) CFU ml(-1) of E. coli O157:H7. The orange juice was then pressure treated at 400 MPa for 1 min at 10 degrees C or was held at ambient pressure (as a control). Surviving E. coli O157:H7 cells were enumerated at 1-day intervals during a storage period of 25 days at 3 degrees C. Survival of E. coli O157:H7 during storage was dependent on the pH of the orange juice. The application of high pressure prior to storage significantly increased the susceptibility of E. coli O157:H7 to high acidity. For example, after pressure treatment, the time required for a 5-log decrease in cell numbers was reduced from 13 to 3 days at pH 3.4, from 16 to 6 days at pH 3.6, and from >25 to 8 days at pH 3.9. It is evident that the use of high-pressure processing of orange juice in order to increase the juice's shelf-life and to inactivate pathogens has the added advantage that it sensitizes E. coli O157:H7 to the high acid conditions found in orange juice, which results in the survival of significantly fewer E. coli O157:H7 during subsequent refrigerated storage.  相似文献   

13.
Effects of different recovery and inoculation methods on quantification of Escherichia coli O157:H7 and Listeria monocytogenes from strawberries were studied. Strawberries were spot or dip inoculated with 7 to 8 log CFU per strawberry of each pathogen, air dried for 2 h, and stored for 1, 3, and 7 days at 4 degrees C. The inoculated samples were stomached or washed with phosphate-buffered saline (PBS; pH 7.2) or with modified PBS (pH 8.4). Bacterial levels were determined using a direct selective plating, thin agar layer plating, or membrane-transferring plating (MTP) with tryptic soy agar and sorbital MacConkey agar (E. coli O157:H7) or modified Oxford agar (L. monocytogenes). Under most test conditions, washing with PBS followed by MTP had significantly higher (P < 0.05) recovery for both bacteria compared with other tested methods. Within a 7-day storage period for spot-inoculated strawberries, a stomaching step resulted in an injury of 0.9 to 1.4 log CFU for E. coli O157: H7 and 1.4 to 1.7 log CFU for L. monocytogenes. When a washing step was used instead, this resulted in an injury of only 0.2 to 0.6 log CFU for E. coli O157:H7 and 0.2 to 0.7 log CFU for L. monocytogenes. Both bacteria could survive on strawberry surfaces, but their recovered levels decreased with the increase of storage time at 4 degrees C for both spot and dip inoculation methods. Dip inoculation generally had a lower recovery than spot inoculation. An ideal protocol to recover and enumerate E. coli O157:H7 and L. monocytogenes from strawberries involved shaking and washing samples with 100 ml of PBS for 15 min at 22 degrees C coupled with a MTP enumeration method.  相似文献   

14.
Unpasteurized apple juice, adjusted to pH 3.6 to 7.0 was inoculated (10(7) CFU/ml) with single strains of E. coli O157:H7 to evaluate the effect of frozen storage on the viability of this organism. Samples were stored under frozen conditions (-20+/-2 degrees C) for up to 16 days. Cell populations were determined at regular intervals by plating onto tryptic soy agar with added pyruvate (TSAP) or onto sorbitol MacConkey agar (SMA). Populations in the neutralized juice remained unchanged during frozen storage. Populations in non-neutralized juice decreased by 1-3 log10 CFU/ml depending on the strain tested and the pH of the juice. The greatest population decrease was observed with the first freeze/thaw cycle of frozen storage (24 h) and a slow decline in survival occurred thereafter. Injury was observed after 2 weeks of storage when juice pH was at or below pH 4.2. When samples were subjected to multiple freeze/thaw cycles, loss of viability and injury increased with each freeze/thaw cycle.  相似文献   

15.
Inactivation of Escherichia coli O157:H7 and Salmonella in apple cider and orange juice treated with ozone was evaluated. A five-strain mixture of E. coli O157:H7 or a five-serovar mixture of Salmonella was inoculated (7 log CFU/ml) into apple cider and orange juice. Ozone (0.9 g/h) was pumped into juices maintained at 4 degrees C, ambient temperature (approximately 20 degrees C), and 50 degrees C for up to 240 min, depending on organism, juice, and treatment temperature. Samples were withdrawn, diluted in 0.1% peptone water, and surface plated onto recovery media. Recovery of E. coli O157:H7 was compared on tryptic soy agar (TSA), sorbitol MacConkey agar, hemorrhagic coli agar, and modified eosin methylene blue agar; recovery of Salmonella was compared on TSA, bismuth sulfite agar, and xylose lysine tergitol 4 (XLT4) agar. After treatment at 50 degrees C, E. coli O157:H7 populations were undetectable (limit of 1.0 log CFU/ml; a minimum 6.0-log CFU/ml reduction) after 45 min in apple cider and 75 min in orange juice. At 50 degrees C, Salmonella was reduced by 4.8 log CFU/ml (apple cider) and was undetectable in orange juice after 15 min. E. coli O157:H7 at 4 degrees C was reduced by 4.8 log CFU/ml in apple cider and by 5.4 log CFU/ml in orange juice. Salmonella was reduced by 4.5 log CFU/ml (apple cider) and 4.2 log CFU/ml (orange juice) at 4 degrees C. Treatment at ambient temperature resulted in population reductions of less than 5.0 log CFU/ml. Recovery of E. coli O157:H7 and Salmonella on selective media was substantially lower than recovery on TSA, indicating development of sublethal injury. Ozone treatment of apple cider and orange juice at 4 degrees C or in combination with mild heating (50 degrees C) may provide an alternative to thermal pasteurization for reduction of E. coli O157:H7 and Salmonella in apple cider and orange juice.  相似文献   

16.
A study on the prevalence of Escherichia coli O157:H7 was conducted on 30 dairy farms in east Tennessee between May 2000 and April 2001. This pathogen was isolated from 8 of 30 (26.7%) dairy farms at various sampling times. A total of 415 fecal samples from cull dairy cows and 268 bulk tank milk samples were analyzed. Overall, 10 of 683 (1.46%) samples (2 of 268 [0.75%] milk samples and 8 of 415 [1.93%] fecal samples) tested positive for E. coli O157:H7. Food and Drug Administration Bacteriological Analytical Manual protocols were used for the conventional isolation and confirmation of E. coli O157:H7. Samples were shake cultured (150 rpm) at 42 degrees C for 24 h in tryptic soy broth containing 2 mg of novobiocin per liter. White colonies isolated on cefixime-tellurite sorbitol MacConkey agar plates were evaluated for fluorescence on sorbitol MacConkey agar supplemented with 0.025 g of methylumbelliferyl-beta-D-glucuronide per liter. Nonfluorescing white colonies were biochemically typed and serologically confirmed. Multiplex polymerase chain reaction profiles of E. coli O157:H7 isolates indicated the presence of common virulence factors (Shiga toxin, enterohemolysin, and intimin) of Shiga toxin-producing E. coli, suggesting the potential human pathogenicity of bacterial isolates. Pulsed-field gel electrophoresis profiles of SpeI and XbaI restriction enzyme-digested genomic DNA were used to establish relatedness among bacterial isolates. Data from this study indicate that both cull dairy cows and bulk tank milk pose a potential hazard with regard to human foodborne illness. It is therefore imperative to develop on-farm and preharvest pathogen reduction programs to control the carriage of E. coli O157:H7 pathogens.  相似文献   

17.
Escherichia coli O157:H7 is a serious and common human pathogen that can cause diarrhoea, haemorrhagic colitis, and haemolytic uraemic syndrome (HUS). This study evaluated the enrichment, detection and confirmation procedures for the isolation of E. coli O157:H7 from raw ground beef and raw drinking milk. The purpose of this investigation was to compare Rainbow Agar O157 (RB; Biolog, Hayward, USA), Biosynth Culture Medium O157:H7 (BCM O157:H7; Biosynth, Staad, Switzerland) and Fluorocult HC (HC; Merck, Darmstadt, Germany) with the conventional Sorbitol MacConkey Agar (SMAC, Merck) using mEC + n (raw ground beef) and mTSB + n (raw milk) enrichment media. Single-path GLISA test (Gold Labeled Immuno Sorbent Assay; Merck) was used as the confirmation test. Growth of 466 strains of gram-negative rods isolated from food samples and 46 known E. coli strains from type culture and other collections (34 E. coli O157:H7 strains and 12 serotypes other than E. coli O157:H7) was examined on the agar media. The E. coli O157:H7 strains could readily be isolated and recognized uniquely by their typical black/grey colonies on RB and blue/black colonies on BCM O157:H7. Examination of the 46 known strains of E. coli reference strains showed false negative results on BCM O157:H7 (3.0%), RB (8.8%), HC (5.9%) and SMAC (5.9%) agars. On BCM O157:H7 no false negative results were found with the typical E. coli O157:H7 (beta-D-glucuronidase and sorbitol negative strains). One of two atypical E. coli O157:H7 strains (beta-D-glucuronidase positive) showed similar colouration to the typical strains and was mis-identified by each of the three media (RB, BCM O157:H7, and SMAC agar media). None of the 60 food samples tested yielded E. coli O157:H7. Examination of the food samples, showed that RB gave the lowest number of false positives. The percentages were RB (2.1%), BCM O157:H7 (3.3%), HC (6.2%), and SMAC (57.3%).  相似文献   

18.
The survival of Escherichia coli O157:H7 in the presence of one of two plant pathogens, Penicillium expansum and Glomerella cingulata, in wounds on apples was observed during 14 days storage at room temperature (RT) and at 4 degrees C. The aim of this work was to determine if changes in apple physiology caused by the proliferation of fungal decay organisms would foster the survival of E. coli O157:H7. Trials were performed where (A) plant pathogens (4 log10 spores) were added to apple wounds 4 days before the wounds were inoculated with E. coli O157:H7 (3 log10 CFU g(-1) apple) (both RT and 4 degrees C storage), (B) plant pathogens and E. coli O157:H7 were added on the same day (both RT and 4 degrees C storage), and (C) E. coli O157:H7 was added 2 days (RT storage) and 4 days (4 degrees C storage) before plant pathogens. In all trials E. coli O157:H7 levels generally declined to <1 log10 at 4 degrees C storage, and in the presence of P. expansum at 4 degrees C or RT. However, in the presence of G. cingulata at RT E. coli O157:H7 numbers increased from 3.18 to 4.03 log10 CFU g(-1) in the apple wound during trial A, from 3.26 to 6.31 log10 CFU g(-1) during trial B, and from 3.22 to 6.81 log10 CFU g(-1) during trial C. This effect is probably a consequence of the attendant rise in pH from 4.1 to approximately 6.8, observed with the proliferation of G. cingulata rot. Control apples (inoculated with E. coli O157:H7 only) were contaminated with opportunistic decay organisms at RT during trials A and B, leading to E. coli O157:H7 death. However, E. coli O157:H7 in control apples in trial C, where no contamination occurred, increased from 3.22 to 5.97 log10 CFU g(-1). The fact that E. coli O157:H7 can proliferate in areas of decay and/or injury on fruit highlights the hazards associated with the use of such fruit in the production of unpasteurized juice.  相似文献   

19.
To improve enrichment and isolation of Escherichia coli O157:H7, this study evaluated increased incubation temperature and cefixime-tellurite (CT) on five strains of each of the following bacteria, E. coli, Hafnia alvei, Enterobacter spp., Citrobacter freundii and E. coli O157:H7, and two strains of E. coli O157:nH7. These were grown in pure culture in LST broth with varying cefixime-tellurite concentrations. A range of incubation temperatures from 37 to 46 degrees C was investigated for the inhibition of cohabitant microorganisms. Minced beef, spiked with E. coli O157:H7 and cohabitant microorganisms was investigated. Increased incubation temperature (42 degrees C) and treatment with half of the prescribed amount of cefixime-tellurite by BAM for SMAC agar in enrichment step were the most effective in selectively growing E. coli O157:H7. The results show that E. coli O157:H7 is more resistant to these two conditions than the other cohabitant bacteria.  相似文献   

20.
In this study, five abattoirs in Istanbul were visited between January 2000 and April 2001. During these visits, 330 cattle were selected by a systematic sampling method. Cattle were examined clinically and breed, age, and sex were recorded. Rectal swabs were taken immediately after slaughter. Immunomagnetic separation was performed, and sorbitol-negative colonies were selected on sorbitol MacConkey agar with cefixime and tellurite (CT-SMAC agar). These colonies were checked for 4-methylenebelliferyl-beta-D-glucuronide, indol, rhamnose, and urease activity and motility. Serotypes of bacteria were determined by using antisera specific for Escherichia coli O157 and H7. All cattle selected were clinically healthy. Of 88 sorbitol-negative colonies selected on CT-SMAC agar, isolates from only 14 (4.2%) cattle reacted with anti-O157, and 13 of these isolates also reacted with anti-H7. E. coli O157:H7 was isolated from all breeds, but the numbers of isolates were largest for Holstein and Swiss Brown cows. E. coli O157:H7 was most frequently isolated from 2-year-old cattle. Similarly, it was most frequently isolated from male cattle. E. coli O157:H7 was isolated from cattle slaughtered in four of the five abattoirs studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号