首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
We examined the hypothesis that the angiotensin converting enzyme inhibitor ramipril at sub-antihypertensive concentrations could improve sarcoplasmic reticulum (SR) CaATPase expression and function in compensated hypertrophied rat hearts. Five weeks after abdominal aortic constriction, rats received a daily dose (50 micrograms/kg/day) of ramipril or vehicle for 4 weeks. Cardiac angiotensin-converting enzyme (ACE) activity increased with cardiac hypertrophy (CH) but returned to normal following ramipril treatment. SR CaATPase protein levels and activity decreased with CH (P < 0.05) and were normalized following ramipril treatment (P < 0.05 for protein and activity). No change in phospholamban (PLB) protein levels could be demonstrated between any of the groups. In contrast, ramipril treatment specifically increased control SR CaATPase and PLB mRNA levels by > 60% (P < 0.01) and > 30%, respectively. In the hypertrophied group, SR CaATPase increased by 35% (P < 0.05 n = 6) after ramipril treatment. Calsequestrin mRNA levels were unaffected by ramipril administration. In conclusion, ramipril normalizes SR CaATPase protein expression and function in pressure-overloaded and compensated CH. The effects of ramipril are however multifaceted, affecting RNA and protein expression differentially.  相似文献   

2.
IBD is associated with an increased activation of intestinal immune cells, which causes overproduction of proinflammatory cytokines such as IL-1beta. IL-1beta is implicated in mediating the sustained inflammatory response. IL-1 receptor antagonist (IL-1Ra), the naturally occurring inhibitor of IL-1, has been shown to have beneficial effects in experimental models of colitis. In this study we investigated the hypothesis that an imbalance between IL-1 and IL-1Ra exists in IBD by measuring their secretion by explant cultures of colonic biopsies. Freshly homogenized biopsies from involved tissue in IBD patients exhibited significantly lower IL-1Ra/IL-1beta ratios than control and uninvolved IBD mucosal tissue. Using explant cultures, in vitro production of IL-1beta and IL-1Ra increased progressively during the 4-18-h culture periods. IL-1beta secretion was higher in supernatants from involved Crohn's disease (CD) and ulcerative colitis tissue compared with control tissue, and IL-1beta levels increased with severity of inflammation. IL-1Ra secretion was not elevated in involved IBD samples, but significantly higher levels were released when moderate to severely involved tissue samples were compared with noninflammatory controls. Similar to freshly homogenized tissue, explant studies showed that the IL-1Ra/IL-1beta ratios were significantly decreased in involved IBD tissue, but not in uninvolved CD or inflammatory control specimens. These data support the hypothesis of an imbalance between IL-1beta and IL-1Ra in IBD.  相似文献   

3.
Phencyclidine hydrochloride (PCP) also known as Angel Dust is a very potent psychotomimetic drug of abuse. Besides its central nervous system (CNS) effects PCP produces a number of adverse effects in a variety of tissues including the cardiovascular system. Since PCP is known to alter the cellular calcium homeostasis the present studies were initiated to determine the changes in cardiac Ca2+ ATPase activity in rats treated with PCP. For in vitro studies the cardiac sarcoplasmic reticulum (SR) fractions prepared from normal rats were incubated with 25, 50 and 100 microM PCP and the enzyme activities were estimated. Whereas, for in vivo studies the cardiac SR fractions prepared from rats treated with PCP (10 mg/kg body wt. single dose, intra-peritoneally (i.p.)) and sacrificed at different time intervals were used. PCP reduced the Ca2+ ATPase activity significantly both in vitro and in vivo. A 50% inhibition of the enzyme activity was obtained with 100 microM PCP in vitro. A significant reduction of SR Ca2+ ATPase was also evident as early as 1 h after treatment of rats with PCP. The reduction of Ca2+ ATPase activity in SR was irreversible even at 12 h after treatment. The in vitro kinetic studies revealed that PCP was found to be a competitive inhibitor of Ca2+ ATPase with respect to the substrate, ATP, and non-competitive with respect to Ca2+ activation. These results indicate that PCP alters the myocardial Ca2+ homeostasis by inhibiting the Ca2+ ATPase in cardiac SR in rats. Inhibition of SR Ca2+ ATPase may result in the impairment of contraction and relaxation coupling processes in the myocardium.  相似文献   

4.
Clotrimazole (CLT), an antimycotic drug, has been shown to inhibit proliferation of normal and cancer cell lines and its systemic use as a new tool in the treatment of proliferative disorders is presently under scrutiny (Benzaquen, L. R., Brugnara, C., Byers, H. R., Gattoni-Celli, S., and Halperin, J. A. (1995) Nature Med. 1, 534-540). The action of CLT is thought to involve depletion of intracellular Ca2+ stores but the underlying mechanism has not been defined. The present study utilized membrane vesicles of rabbit cardiac sarcoplasmic reticulum (SR) to determine the mechanism by which CLT depletes intracellular Ca2+ stores. The results revealed a strong, concentration-dependent inhibitory action of CLT on the ATP-energized Ca2+ uptake activity of SR (50% inhibition with approximately 35 microM CLT). The inhibition was of rapid onset (manifested in <15 s), and was accompanied by a 7-fold decrease in the apparent affinity of the SR Ca2+-ATPase for Ca2+ and a minor decrement in the enzyme's apparent affinity toward ATP. Exposure of SR to CLT in the absence or presence of Ca2+ resulted in irreversible inhibition of Ca2+ uptake demonstrating that the Ca2+-bound and Ca2+-free conformations of the Ca2+-ATPase are CLT-sensitive. Introduction of CLT to the reaction medium subsequent to induction of enzyme turnover with Ca2+ and ATP resulted in instantaneous cessation of Ca2+ transport indicating that an intermediate enzyme species generated during turnover undergoes rapid inactivation by CLT. The inhibition of Ca2+ uptake by CLT was accompanied by inhibition of Ca2+-stimulated ATP hydrolysis and Ca2+-induced phosphoenzyme intermediate formation from ATP in the ATPase catalytic cycle. Phosphorylation of the Ca2+-deprived enzyme with Pi in the reverse direction of catalytic cycle and Ca2+ release from Ca2+-preloaded SR vesicles were unaffected by CLT. It is concluded that CLT depletes intracellular Ca2+ stores by inhibiting Ca2+ sequestration by the Ca2+-ATPase. The mechanism of ATPase inhibition involves a drug-induced alteration in the Ca2+-binding site(s) resulting in paralysis of the enzyme's catalytic and ion transport cycle. CLT (50 microM) caused marked depression of contractile function in isolated perfused, electrically paced rabbit heart preparations. The contractile function recovered gradually following withdrawal of CLT from the perfusate indicating the existence of mechanisms in the intact cell to inactivate, metabolize, or clear CLT from its target site.  相似文献   

5.
Phosphorylase a activity was the same in isolated perfused hearts from euthyroid and thyroxine-pretreated rats. Perfusion with 3.6 mM Ca2+ caused an increase in phosphorylase a in hearts from euthyroid as well as those from thyroxine-pretreated animals, but the Ca2+-induced stimulation of phosphorylase activity was similar in both groups over the time course studied. Greater conversion of phosphorylase b to a occurred with 7.2 mM than with 3.6 mM Ca2+ in both groups, but once again thyroxine pretreatment did not significantly influence the conversion of phosphorylase b to a. Isometric systolic tension increased in response to 3.6 mM and 7.2 mM Ca2+ in hearts from normal and thyrotoxic rats, but thyroxine pretreatment did not appreciably alter the nature of this response. While spontaneous heart rate was higher in hearts from thyroxine-pretreated rats, perfusion with 3.6 mM or 7.2 mM Ca2+ had no significant effect on heart rate in hearts from euthyroid or thyrotoxic rats.  相似文献   

6.
INTRODUCTION: Ventricular dilatation has important electrophysiologic effects, but its effect on ventricular defibrillation threshold (DFT) is unknown. METHODS AND RESULTS: A fluid-filled, latex balloon was placed in the left ventricular cavity of 19 isolated rabbit hearts. In each experiment, an undilated volume (equivalent to a left ventricular end-diastolic pressure of approximately 0 mmHg) was compared to a dilated volume achieved by adding 1.0 mL of saline (n = 10) or 5% dextrose (n = 9) to the intracavitary balloon. Left ventricular effective refractory period (ERP) and DFT were determined at each volume. Defibrillation was attempted with a monophasic shock delivered between a patch electrode positioned over the posterior left ventricle (cathode) and a metallic aortic cannula (anode). DFT was determined using a modified "down/up" protocol with 10 V steps. Ventricular dilatation increased the left ventricular end-diastolic pressure from 0 +/- 0.5 mmHg to 35 +/- 3 mmHg (P < 0.001), decreased the average left ventricular ERP 15% (from 116 +/- 3 msec to 99 +/- 3 msec; P < 0.001), and increased the average DFT 30% (from 96 +/- 4 V to 125 +/- 7 V; P < 0.001). In one third of experiments, the dilated DFT was > or = 150% of the DFT at zero volume. The mechanism of the observed increase in DFT is unknown but may be related to the decrease in refractoriness observed with ventricular dilatation. CONCLUSION: Acute ventricular dilatation in this model increased DFT an average of 30%, an effect not previously described. This observation may have implications for patients with implantable cardioverter defibrillators.  相似文献   

7.
The precise mechanisms by which nitric oxide (NO) decreases free [Ca2+]i, inhibits Ca2+ influx, and relaxes vascular smooth muscle are poorly understood. In rabbit and mouse aorta, agonist-induced contractions and increases in [Ca2+]i were resistant to nifedipine, suggesting Ca2+ entry through non-L-type Ca2+ channels. Relaxations to NO were inhibited by thapsigargin (TG) or cyclopiazonic acid (CPA) indicating the involvement of sarcoplasmic reticulum ATPase (SERCA). Studies of the effect of NO on [Ca2+]i and the rate of Mn2+ influx with fura-2 fluorometry in rabbit aortic smooth muscle cells in primary culture were designed to test how SERCA is involved in mediating the response to NO. When cells were stimulated with angiotensin II (AII), NO accelerated the removal of Ca2+ from the cytoplasm, decreased [Ca2+]i, and inhibited Ca2+ and Mn2+ influx. Inhibition of SERCA abolished all the effects of NO. In contrast, inhibition of the Na+/Ca2+exchanger or the plasma membrane Ca2+ ATPase had no influence on the ability of NO to decrease [Ca2+]i. NO maximally decreased [Ca2+]i within 5 s, whereas significant inhibition of AII-induced Ca2+ and Mn2+ influx required more than 15 s. The inhibition of cation influx strictly depended on [Ca2+]o and functional SERCA, suggesting that during the delay before NO inhibits Ca2+ influx, the influx of Ca2+ and the uptake into intracellular stores are required. In the absence of [Ca2+]o, NO diminished the AII-induced [Ca2+]i transient by a SERCA-dependent mechanism and increased the amount of Ca2+ in the stores subsequently released by ionomycin. The present study indicates that the initial rapid decrease in [Ca2+]i caused by NO in vascular smooth muscle is accounted for by the uptake of Ca2+ by SERCA into intracellular stores. It is proposed that the refilling of the stores inhibits store-operated Ca2+ influx through non-L-type Ca2+ conducting ion channels and that this maintains the decrease in [Ca2+]i and NO-induced relaxation.  相似文献   

8.
Two of the most significant characteristics of failing human myocardium are an increased diastolic [Ca2+]i and a prolonged diastolic relaxation. These abnormalities are more pronounced at higher frequencies of stimulation and may be caused by an altered Ca2+ resequestration into the sarcoplasmic reticulum (SR). The force-frequency relationship was determined in multicellular preparations obtained from non-failing (n=6) and failing human myocardium (n=11). The active force in non-failing tissue increased as a function of the frequency of stimulation. In failing myocardium, an increase in frequency of stimulation (>1 Hz) was accompanied by a decrease in active force. Changes in the frequency of stimulation and active force were also associated with changes in intracellular calcium concentrations. The diastolic force in failing myocardium was augmented following an increase in frequency of stimulation, whereas in non-failing tissue, no increase in diastolic force was observed. Associated with the increase in diastolic force was an increase in intracellular diastolic calcium concentrations. The SR Ca2+ ATPase activity was reduced in failing compared to non-failing myocardium. SR Ca2+ ATPase was positively correlated with diastolic force in non-failing myocardium. The relationship between Ca2+ ATPase activity at 1 micromol/l [Ca2+] and active force between 0.5 and 2.0 Hz was different between failing and non-failing myocardium. The diastolic force demonstrate an inverse relationship with the SR Ca2+ ATPase activity in failing myocardium. These data suggest that a reduction in SR Ca2+ ATPase activity contributes to the impairment in both systolic and diastolic function of failing human hearts.  相似文献   

9.
To study the effects of acute coronary hypotension on the working dog heart in situ, both coronary arteries were cannulated and perfused with oxygenated blood at controlled pressures (40 to 120 mm Hg). At a perfusion pressure of 120 mm Hg, total coronary artery flow appeared to be sufficient (0.95+/-0.08 ml/min-g) to maintain normal cardiac performance for a 2.5-hour observation period. During incremental decreases in coronary perfusion pressure, significant linear correlations were found between coronary flow and cardiac index (r=0.84), left ventricular maximum dP/dt (r=0.83), stroke index (r=0.82), stroke work (r=0.83) and mean arterial pressure (r=0.62). During simulated shock conditions (systolic arterial pressure, less than 75 mm Hg), relative reductions in coronary flow (-60.9+/-4.0%) paralleled changes seen in cardiac function and persisted for 28+/-4 min.  相似文献   

10.
The objective of this study was to estimate the dominance variance for postweaning gain in Limousin cattle. Data included 215,326 records of postweaning gain from 205 to 365 d, provided by the North American Limousin Foundation. Parental dominance subclasses were formed and related using the method of Hoeschele and VanRaden. Variance components were estimated using Method R based on six samples of 50%. Fixed effects in the model included contemporary group and covariates for inbreeding and breed composition (percentage Limousin). Heterozygosity was negatively correlated with breed composition (< -.99) and was therefore not included in the model. Two types of contemporary groups used as original groups from the National Cattle Evaluation were partially based on breed composition. Original contemporary groups that were too homogeneous for breed composition were replaced by herd-year-sex classes. Two models were used with the two data sets. Model 1 contained the fixed effects described above and an additive genetic effect. Model 2 included a dominance effect in addition to the effects contained in Model 1. In total, four combinations of contemporary group x model were used. Dominance variance was computed as being four times the estimated parental subclass variance. Estimates for inbreeding depression and breed composition (percentage Limousin) were all small and not greatly affected by inclusion of dominance effects or changes in contemporary groups. Estimates of the additive variance (expressed as percentage of the phenotypic variance) were only slightly affected, with values between 20 and 21%. Dominance estimates were highly affected when passing from original (10%) and to alternative contemporary groups (18%). Such large values may indicate that dominance is important for postweaning gain. Results showed the advantage of an individual dominance approach based on sire-dam combinations; therefore, expected gains through the use of specific combination ability as a part of the mating selection criteria for growth might be high.  相似文献   

11.
Nitric oxide concentrations in the exhaled gas (NOe) increases during various inflammatory conditions in humans and animals. Little is known about the sources and factors that influence NOe. NOe at end expiration was measured by chemiluminescence in an isolated, blood-perfused rabbit lung. The average end-expiratory concentration over 10 breaths was used. The effect of positive end-expiratory pressure (PEEP), flow rate, pH, hypoxia, venous pressure, and flow pulsatility on NOe were determined. At constant blood flow, increasing PEEP from 1 to 5 cm H2O elicited a reproducible increase in NOe from 49 +/- 7 to 53 +/- 8 parts per billion (ppb) (p < 0.05). When blood pH was increased from 7.40 to 7.74 by breathing low CO2 gas, NOe rose from 45 +/- 7 to 55 +/- 7 ppb (p < 0.001). Hypoxia caused a dose-dependent decrease in NOe from 37 +/- 3 during baseline to 23 +/- 2 during ventilation with 0% O2 (p < 0.01). Venous pressure elevation from 0 to 5 and 10 mm Hg decreased NOe from 32 +/- 5, to 26 +/- 5 and 24 +/- 5 ppb, respectively (p < 0.05). Switching from steady to pulsatile flow (same man flow) resulted in a small, albeit significant reduction in NOe; 30 +/- 4 to 28 +/- 4 ppb (p < 0.05). Changes in flow rate between 200 and 20 ml/min were associated with small changes in NOe; however, when flow was stopped, NOe rose substantially to 56 +/- 6 ppb (p < 0.05). The changes in NOe were rapid (1 to 2 min) and reversible. The results suggest that NOe is influenced by ventilatory and hemodynamic variables, pH, and hypoxia. We suggest that caution must be taken when interpreting changes in exhaled NO in humans or experimental animals. Changes in total and regional blood flow, capillary blood volume, ventilation, hypoxia, and pH should not be overlooked.  相似文献   

12.
We have studied the effects of the nonionic detergent C12E8 on Ca-ATPase enzymatic activity and oligomeric state (detected by time-resolved phosphorescence anisotropy, TPA) in skeletal and cardiac sarcoplasmic reticulum (SR). In skeletal, SR, C12E8 inhibits the CA-ATPase, both at high (micromolar and above) and low (submicromolar) Ca. In cardiac SR, C12E8 inhibits at high Ca but activates at low Ca. Thus C12E8 activates enzymatic activity only in cardiac SR and only under conditions (submicromolar Ca) where phospholamban (PLB) regulates (inhibits) the enzyme [Lu, Y.-Z., & Kirchberger, M.A. (1994) Biochemistry 33, 5056-5062]. TPA of skeletal SR at low and high Ca demonstrates that C12E8 induces aggregation of ATPase monomers and small oligomers. C12E8 also aggregates the Ca-ATPase in cardiac SR at high Ca. In cardiac SR at low Ca, the Ca-ATPase is already highly aggregated, and C12E8 partially dissociates these aggregates. Thus the TPA results provide a simple physical explanation for the functional effects: C12E8 inhibits the ATPase when it aggregates the enzyme (skeletal SR at high and low Ca; cardiac SR at high Ca), and the detergent activates when it dissociates ATPase oligomers (cardiac SR at low Ca). C12E8 stabilizes the E2P conformation of the Ca-ATPase with respect to the E2 conformation, and this stabilization is PLB-dependent. Both the physical and functional effects of C12E8 on the Ca-ATPase are PLB-dependent, with C12E8 reversing the effects of PLB. The results provide insight into the mechanism by which PLB regulates the Ca-ATPase in cardiac SR.  相似文献   

13.
This study tested the hypothesis that perfusion with low concentrations of ryanodine, which opens the sarcoplasmic reticulum (SR) Ca2+ channel in a sub-conducting state, could mimic the effects of stunning on both mechanical and SR activity. Perfusion of isolated rat hearts with 10-160 nM ryanodine progressively decreased left ventricular developed pressure (LVDP) and increased end-diastolic pressure (EDP), but LVDP decreased more and EDP increased less than in the stunned heart. The effect of ryanodine perfusion on LVDP and EDP is consistent with the opening of the SR Ca2+ channel by high-affinity ryanodine binding, reducing SR Ca2+ content and interfering with mechanical function. In contrast to stunning, ryanodine perfusion did not affect the homogenate Ca2+ uptake rates measured in the presence or absence of high [ryanodine]. Perfusion with 80 nM 3H-ryanodine resulted in a large decline in LVDP, but only a small degree of ryanodine binding. Thus, prolonged opening of only a few channels affects the SR in situ, whereas this is undetectable in the homogenate. Higher levels of ryanodine binding (0.3 pmol/mg) to the in vitro homogenate also did not affect the homogenate Ca(2+)-uptake rate in the presence or absence of high [ryanodine], whereas it reduced the stimulation of Ca2+ uptake by ruthenium red. High-affinity ryanodine binding to the SR Ca2+ channel, either by perfusion or by binding after homogenisation, did not duplicate the increased Ca2+ efflux observed in the stunned heart, suggesting that the SR defect in the stunned heart is not a prolonged opening of a sub-conducting state of the SR Ca2+ channel.  相似文献   

14.
Phospholamban (PLN) phosphorylation contributes largely to the inotropic and lusitropic effects of beta-adrenergic agonists on the heart. The mechanical effects of PLN phosphorylation on the heart are generally attributed solely to an increase in the apparent affinity of the Ca pump in the sarcoplasmic reticulum (SR) membranes for Ca2+ with little or no effect on Vmax(Ca). In the present report, we compare the kinetic properties of the cardiac SR Ca pump in commonly studied crude microsomes with those of our recently developed preparation of light SR vesicles. We demonstrate that in crude microsomes, the increase in the apparent affinity of the pump for Ca2+ is larger, while the increase in Vmax(Ca) is smaller, than in purified vesicles. The greater phosphorylation-induced increase in apparent Ca2+ affinity in crude microsomes may be further enhanced by an ATP-sensitive inhibitory effect of ruthenium red on the activity of the pump at subsaturating, but not saturating, Ca2+ concentrations as a result of a greater inhibition in unphosphorylated microsomes. Upon increasing the ATP concentration from 1 to 5 mm, an inhibition by 10 micrometer ruthenium red is eliminated in phosphorylated microsomes and reduced in control microsomes. Addition of the phosphoprotein phosphatase inhibitor okadaic acid produces a considerable increase in the phosphorylation-induced effects in both crude and purified microsomes. We conclude that the use of purified cardiac SR vesicles is critical for the demonstration of a major increase in Vmax(Ca) in addition to an increase in the pump's apparent affinity for Ca2+ in response to phosphorylation of PLN by protein kinase A.  相似文献   

15.
We addressed the hypothesis that administration of nitric oxide synthase inhibitor, NG -nitro-L-arginine methyl ester (L-NAME) does not result in a sustained suppression of nitric oxide (NO) synthesis, because of a compensatory expression of inducible nitric oxide synthase (iNOS). L-NAME was administered in the drinking water (0.1-1.0 mg/ml) for 7 days to guinea pigs and rats. Nitric oxide synthesis was assessed by [1] ex vivo formation of nitrite in blood vessels and intestine [2] tissue levels of cGMP [3] iNOS gene expression by RT-PCR [4] NADPH diaphorase staining [5] direct assessment of NO release in tissue explants using a microelectrode/electrochemical detection system. Chronic L-NAME administration elevated intestinal cGMP and nitrite levels in guinea pigs (p < 0.05). In rats, intestinal nitrite levels were comparable in control and L-NAME treatment groups, whereas direct assessment of NO release defined a marked increase in the L-NAME group. Chronic L-NAME resulted in an induction of iNOS gene expression in rats and guinea pigs and novel sites of NADPH diaphorase staining in the intestine. We conclude that iNOS expression is responsible for a compensatory increase or normalization of NO synthesis during sustained administration of L-NAME.  相似文献   

16.
Acute and chronic effects of Nw-nitro-L-arginine (L-NNA), an inhibitor of nitric oxide synthase, were examined on the hindquarter hemodynamics of conscious rabbits. After pharmacological autonomic reflex blockade on four experimental days (days 0, 1, 2, and 7), responses to aortic occlusion (balloon cuff, 5-80 s inflation), intra-aortic infusion of acetylcholine, adenosine, and sodium nitroprusside (SNP) were measured before and after vehicle (day 0) or L-NNA (16 mg/kg/h i.v., days 1, 2, and 7). On day 1, L-NNA raised the mean arterial pressure (MAP), and lowered the heart rate (HR) and hindquarter vascular conductance (HVC = abdominal aortic Doppler blood flow/MAP). On days 2 and 7, L-NNA only slowly raised the MAP. The dilator response to acetylcholine was inhibited by L-NNA on day 1 and before and after L-NNA on days 2 and 7. The responses to aortic occlusion, adenosine, or SNP infusion were unaffected by L-NNA treatment on any day. Thus, if nitric oxide synthase inhibition by L-NNA abolishes NO release, then (i) reactive hyperaemia is independent of NO, (ii) basal NO release normalises the arterial pressure in the short term but other factors become important in the long term, and (iii) the blockade by L-NNA of receptor-stimulated NO release by acetylcholine is only very slowly reversible.  相似文献   

17.
BACKGROUND: Postoperative hypomagnesemia is common in patients who have undergone cardiac operations and is associated with clinically significant morbidity resulting from atrial and ventricular dysrhythmias. Magnesium supplementation may increase the cardiac index in the early postoperative period. METHODS: The action of the magnesium cation on coronary vascular reactivity was studied. Segments of canine epicardial coronary artery were suspended in organ chambers to measure isometric force (95% O2/5% CO2, 37 degrees C). RESULTS: In coronary segments constricted with prostaglandin F2alpha (2 x 10[-6] mol/L), acetylcholine and adenosine diphosphate (10[-9] to 10[-4] mol/L) induced vasodilation in arteries with endothelium (n=10, each group; p < 0.05). Acetylcholine-mediated vasodilation was blocked by NG-monomethyl-L-arginine (10[-4] mol/L) and NG-nitro-L-arginine (10[-4] mol/L), two inhibitors of nitric oxide synthesis from L-arginine (n=10, p < 0.05). The removal of magnesium from the organ chamber solution impaired vasodilation in response to acetylcholine and adenosine diphosphate. However, normal endothelium-dependent vasodilation could be restored by return of magnesium to the bathing solution. Vascular relaxation in response to bradykinin (10[-9] to 10[-6] mol/L), which was found to induce endothelium-dependent vasodilation independent of nitric oxide production, was unaffected by magnesium removal (n=10). CONCLUSIONS: Hypomagnesemia selectively impaired the release of nitric oxide from the coronary endothelium. Because nitric oxide is a potent endogenous nitro-vasodilator and inhibitor of platelet aggregation and adhesion, hypomagnesemia could promote vasoconstriction and coronary thrombosis in the early postoperative period.  相似文献   

18.
Systolic [Ca2+]i-transients have been shown to be depressed in isolated ventricular myocytes from patients with terminal heart failure compared to controls. Experiments were performed in human ventricular cells to investigate whether this reduced systolic [Ca2+]i-transient may be due to a decreased Ca(2+)-content of the sarcoplasmic reticulum (SR). Single myocytes were isolated from left ventricular myocardium of patients with terminal heart failure undergoing cardiac transplantation. These results were compared to those obtained from cells of healthy donor hearts that were not suitable for transplantation for technical reasons. [Ca2+]i-transients were recorded from isolated cells under voltage clamp perfused internally with the Ca(2+)-indicator fura-2. The Ca(2+)-content of the SR was estimated by rapid extracellular application of caffeine (10 mM) to open the Ca(2+)-release channel of the SR and comparison of the caffeine-induced [Ca2+]i-transients in cells from patients with heart failure and from controls without heart failure. Upon steady-state depolarizations to +10 mV (maximum of the Ca(2+)-current), [Ca2+]i-transients in cells from patients with heart failure were significantly smaller than in myocytes from undiseased hearts (333 +/- 26 v 596 +/- 80 nM, P < 0.05). Application of caffeine caused a [Ca2+]i-transient that was always larger than during depolarization. Caffeine-induced [Ca2+]i-transients were significantly smaller in cells from diseased hearts compared with controls (970 +/- 129 v 2586 +/- 288 nM, P < 0.01). A positive correlation was found between left ventricular ejection fraction and caffeine-induced [Ca2+]i-transients in these cells. It is concluded, that depressed [Ca2+]i-transients in myocytes from patients with heart failure may be caused by a decreased Ca(2+)-content of the SR possibly due to an altered Ca(2+)-ATPase activity in these hearts. It is not necessary to postulate an additional defect of the Ca(2+)-release function of the SR to account for the alterations of intracellular (Ca2+]i-handling.  相似文献   

19.
1. The effects of a lipoxygenase inhibitor, BW A4C, on digoxin-induced arrhythmias and cardiac dynamics (contractile force, perfusion pressure, heart rate) were investigated in Langendorff-perfused isolated guinea-pig hearts. In the control group, arrhythmias were induced by 25 micrograms/ml digoxin at a perfusion rate of 0.5 ml/min. In the treated groups, BW A4C (1 and 0.3 microM) perfused continuously from 15 min prior to digoxin until cardiac arrest occurred. Digoxin exposure (microgram/g wet weight of heart) for the occurrence of arrhythmias and cardiac arrest were the parameters evaluated to assess cardiotoxicity. 2. Digoxin caused a marked increase in leukotriene B4 release in the coronary effluent, and was collected during tachyarrhythmias. BW A4C markedly inhibited the digoxin-induced elevation of LTB4. 3. BW A4C (1 and 0.3 microM) did not prevent the onset of ventricular fibrillation and ventricular tachycardia despite a slight delay in the occurrence of ventricular fibrillation and cardiac arrest at the 0.3 microM concentration. 4. Contractile force increased significantly after digoxin infusion which was concomitant with the time of onset of arrhythmias. In the presence of BW A4C, the contractile force increased, but not significantly. Perfusion pressure increased initially after digoxin infusion in the absence and the presence of BW A4C, but not significantly. 5. These findings show that the lipoxygenase inhibitor lacked any protective action on digoxin-induced arrhythmias despite its effective suppression of digoxin-induced elevation of LTB4 in coronary effluent.  相似文献   

20.
The effects of local anaesthetics, bupivacaine and lidocaine, on Ca2+ flux behaviour of sarcoplasmic reticulum and on sarcolemmal functions were studied in the rabbit masseter muscle. The experiments were performed on sarcoplasmic reticulum and sarcolemmal vesicles prepared at 1 to 10 days after injection of local anaesthetics or saline into masseter muscle as well as on sarcoplasmic reticulum vesicles prepared from non-treated rabbits (for assessment of the effect on in vitro incubation with local anaesthetics). Bupivacaine potently reduced the efficiency of active sarcoplasmic reticulum Ca2+ transport as evaluated by coupling ratio (Ca2+ transported/ATP hydrolyzed, in the presence of oxalate) at 3 days after the injection; there was only a slight degree of uncoupling of Ca2+ transport from ATP hydrolysis with lidocaine injection. Bupivacaine but not lidocaine, at 3 days after injection, decreased both the apparent permeability of sarcoplasmic reticulum vesicles to Ca2+, determined by measuring net efflux of Ca2+ after stopping pump-mediated fluxes, and the steady-state Ca2+ load in sarcoplasmic reticulum, but had no effect on overall turnover of the Ca2+ATPase. The effects of bupivacaine on apparent sarcoplasmic reticulum Ca2+ permeability and steady-state Ca2+ load were inhibited by a Ca2+ antagonist verapamil. The reduction of Ca2+ uptake of sarcoplasmic reticulum and the protective effect of verapamil were reproduced in unfractionated homogenates prepared at 3 days after bupivacaine injection. In vitro exposure of sarcoplasmic reticulum vesicles to bupivacaine (0.5 to 50 mM) reduced steady-state Ca2+ load in a dose-dependent manner. The observed effect elicited by bupivacaine (25 mM) was partially protected by procaine, an inhibitor of Ca2(+)-induced Ca2+ release from sarcoplasmic reticulum, or by specific closure of the sarcoplasmic reticulum Ca2+ release channel by ryanodine, suggesting the possibility that in vitro exposure of sarcoplasmic reticulum vesicles to bupivacaine may produce an increase in apparent permeability of sarcoplasmic reticulum to Ca2+. In sarcolemma, bupivacaine reduced Na+,K(+)-ATPase and Na(+)-Ca2+ exchange activities at 3 days after injection; the effects on sarcolemmal vesicles were prevented by verapamil. These results suggest that although the effects elicited by bupivacaine injection and the in vitro exposure to bupivacaine on steady-state Ca2+ load of sarcoplasmic reticulum vesicles were similar, the membrane properties of the vesicles from bupivacaine-treated masseter muscles and those from normal untreated muscles may not be the same, which indicates that pure bupivacaine effect is due partly by an effect on ryanodine- and procaine-sensitive Ca2+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号