首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
研究了ZnO-B2O3-Na2O(ZBN)玻璃对陶瓷的烧结性能及微波介电特性的影响.研究表明ZBN的掺入能有效降低对Ca[(Li1/3Nb2/3)0.95Zr0.15]O3+δ陶瓷体系的烧结温度150~230 ℃,谐振频率温度系数随ZBN掺入量增加及烧结温度的提高,由负值向正值方向增大.在990 ℃,掺入3%(质量分数,下同)的ZBN,陶瓷微波介电性能最佳:εr=31.5,Qf=12530 GHz,τf =-7.6 ppm/℃.  相似文献   

2.
研究了ZnO-B2O3-SiO2(ZBS)玻璃对陶瓷的烧结性能及微波介电特性的影响.研究表明ZBS的掺入能有效降低Ca[(Li1/3Nb2/3)0.95Zr0.15]O3+δ陶瓷体系的烧结温度150-200℃,谐振频率温度系数随ZBs掺入量增加及烧结温度的提高,由负值向正值方向移动.在1000℃,掺入质量分数7wt%的ZBN,陶瓷微波介电性能最佳:εr=31.1,Qf=9530GHz,τf=8.9ppm/℃.在960℃烧结4小时,可获得介电性能为:εг=28.6,Qf=6410GHz,τf=-9.8ppm/℃陶瓷样品.  相似文献   

3.
研究了ZnO-B2O3-SiO2(ZBS)玻璃对陶瓷的烧结性能及微波介电特性的影响。研究表明ZBS的掺入能有效降低Ca[(Li1/3Nb2/3)0.95Zr0.15]O3+δ陶瓷体系的烧结温度150-200℃,谐振频率温度系数随ZBS掺入量增加及烧结温度的提高,由负值向正值方向移动。在1000℃,掺入质量分数7wt%的ZBN,陶瓷微波介电性能最佳:εr=31.1,Qf=9550GHz,Tf=-8.9ppm/℃,在960℃烧结4小时,可获得介电性能为:εf=28.6,Qf=641OGHz,Tf=-9.8ppm/℃陶瓷样品。  相似文献   

4.
崔向红  耿振华 《硅酸盐通报》2017,36(11):3659-3663
通过传统固相法制备了α-CaSiO3/Al2O3-B2O3微波介质陶瓷,研究了不同B2 O3添加量对α-CaSiO3/Al2O3陶瓷烧结特性、相组成及微波介电性能的影响,通过XRD、SEM和网络分析仪对其相结构、微观形貌和微波介电性能进行了表征.结果表明:B2 O3的添加使陶瓷的烧结温度从1375℃降低到了1100℃,并使主晶相由α-CaSiO3相变为β-CaSiO3相;当B2 O3的添加量为3wt%时,在1100℃烧结2 h可获得最佳微波介电性能:εr=6.21,Q×f=30471 GHz,τf=-34.58 ppm/℃.  相似文献   

5.
(Mg1-xCox)TiO3基微波陶瓷介电性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以MgO,Co2O3和TiO2为原料,用固相反应法制备了(Mg1-xCox)TiO3(MCT)系陶瓷.研究了CoTiO3含量对其微观结构和微波介电性能的影响.结果表明:添加适量的CoTiO3,可以适当降低烧结温度,调整烧结温度范围.当掺入量为10 mol%,烧结温度为1350 ℃时,MCT陶瓷具有优良微波介电性能:εr=18.99;Q×f=154000 GHz,τf=-45 ppm/℃.  相似文献   

6.
选用B2O3-CuO(BC)低熔点复合氧化物作为烧结助剂,采用固相法制备(Ca0.9375Sr0.0625)0.25(Li0.5Sm0.5)0.75TiO3(CSLST)陶瓷,研究了不同含量的BC对CSLST陶瓷的晶相组成、烧结性能及微波介电性能的影响.研究结果表明:随BC添加量的增多,CSLST陶瓷的烧结温度降低,陶瓷的微波介电常数εr和谐振频率温度系数(Τ)f下降,品质因素Qf明显降低.当BC添加量为5wt%时,在1000℃保温5h可烧结,此时陶瓷具有较佳的微波介电性能:εr=80.4,Q×f=1380 GHz,(Τ)f=- 32.89×10-6/℃.  相似文献   

7.
研究了制备工艺对Ca[(Li1/3Nb2/3)0.95Zr0.15]O3-δ(CLNZ)陶瓷的微观结构及微波介电特性的影响.研究表明,煅烧温度对晶粒形貌有明显影响,随煅烧温度的增加,气孔率减小,但超过900℃后又增加.当煅烧温度为900℃,在115℃、4h烧结,陶瓷微波介电性能最佳:εγ=31.6,Qf=13100GHz,τf=-9.4ppm/℃.  相似文献   

8.
研究了BaCu(B2O5)的掺入对0.95MgTiO3-0.05CaTiO3微波介质陶瓷介电性能的影响。用XRD和SEM分析其相组成及微观形貌。结果表明:BaCu(B2O5)的加入能够使0.95MgTiO3-0.05CaTiO3陶瓷的烧结温度降至1100℃并有效抑制第二相MgTi2O5的形成。在1100℃烧结3h,加入3wt%BaCu(B2O5)的0.95MgTiO3-0.05CaTiO3陶瓷获得了较好的介电性能:εr=22.9,Q×f=25,000GHz(7GHz),τf=-3.3ppm/℃(7GHz)。  相似文献   

9.
采用传统固相反应法制备了0.6Mg4Nb2O9-0.4SrTiO3复合陶瓷.研究了LiF掺杂对其烧结特性、显微组织和微波介电性能的影响.实验结果表明:通过添加一定量的LiF,可将Mg4Nb2O9/SrTiO3陶瓷的致密化烧结温度降至1100 ℃;其中掺杂1.5wt% LiF、 1100 ℃下烧结5 h的0.6Mg4Nb2O9-0.4SrTiO3陶瓷微波介电性能为:ε=20.6,Q·f=4057 GHz; 样品的微波介电性能与杂相Sr(Ti1-xNbx)O3+δ和残留液相有关.  相似文献   

10.
唐骅  伍海浜  孟范成 《硅酸盐通报》2017,36(3):1090-1093
采用传统固相反应法制备了添加H3BO3助烧剂的Li2Zn3Ti4O12 (LZT)陶瓷,分别通过XRD、SEM、排水法及网络分析仪等方法研究了不同H3BO3添加量对所得陶瓷的物相、微观形貌、烧结特性与微波介电性能的影响.结果表明在LZT陶瓷中添加3wt% H3BO3可有效降低烧结温度,在900 ℃/2 h烧结条件下可以获得高致密性及优异的微波介电性:ρ=4.15 g/cm3,εr=17.916,Q×f=61200 GHz,Tf=-52.87×10-6/℃.  相似文献   

11.
研究了BaCu(B_2O_5)(简写为BCB)掺入对14CaO-4BaO-8Li_2O-12Sm_2O_3-63TiO_2(简写为CBLST)微波介质陶瓷介电性能的影响.用XRD和SEM研究其相组成及微观形貌.结果表明:BaCu(B_2O_5)掺入能显著降低CBLST陶瓷的烧结温度,由1325 ℃降至1100 ℃.1100 ℃烧结2 h后,仍包含正交钙钛矿相和棒状的BST相.掺入6wt% BaCu(B_2O_5)的CBLST陶瓷取得了较好的介电性能:Kr=87.76,tanδ=0.018,TCF=-4.27 ppm/℃(1 MHz).  相似文献   

12.
赵学国 《硅酸盐通报》2014,33(2):401-405
本文以Li2CO3,ZnO,CaCO3,TiO2为原料,采用固相反应法制备了Li2Zn3(1-x)Ca3xTi4O12(x=0,0.05,0.1,0.15)陶瓷,并研究了CaTiO3固溶量对其显微结构和微波介电性能的影响.结果表明:Li2Zn3Ti4O12晶相中固溶CaTiO3相,晶胞参数会增大;少量CaTiO3相固溶于Li2Zn3Ti4O12陶瓷后,提高了Li2Zn3Ti4012陶瓷的烧结温度及其介电常数,但降低了其品质因素,可增大其温频系数.在1100℃/2 h烧结条件下,Li2Zn2.7Ca0.3Ti4O12陶瓷微波介电性能达到:εr=24,Q×f=50000 GHz,Tf=-25×10-6/℃.  相似文献   

13.
采用固相反应法制备了0.965 MgTiO3-0.035SrTiO3 (MST)微波介质陶瓷,选用Zn2+对MST陶瓷进行了A位离子掺杂,研究了不同Zn2+掺杂量对陶瓷烧结性能、晶相组成、显微结构及微波介电性能的影响.结果表明,Zn2的掺入促进了陶瓷的烧结,显著提高了陶瓷的致密度,且没有改变陶瓷的主晶相.在掺杂量小于0.04mol%范围内,随着Zn2+掺杂量的增加,陶瓷的介电常数增加,品质因素和频率温度系数略有降低.中间相MgTi2 O5的衍射峰强度随着Zn2+掺杂量的增加逐渐减弱直至完全消失.当Zn2掺杂量为x=0.03时,陶瓷的烧结温度由1380℃降低至1290℃,并呈现优异的微波介电性能:εr=22.51,Q×f=16689 GHz,τf=-4.52×10-6/℃.  相似文献   

14.
采用传统电子陶瓷制备工艺,以42BaO-45B2O-13SiO2(BBS)玻璃为烧结助剂,制备了可以中温烧结的Ca0.3(Li1/2Sm1/2)0.7TiO3 微波介质陶瓷,对陶瓷的晶相组成、烧结性能及微波介电性能进行了系统研究.结果表明:通过液相烧结,BBS玻璃能有效降低Ca0.3(Li1/2m1.2)TiO3陶瓷的烧结温度,由1300℃降低至1000℃.XRD结果显示陶瓷主晶相为斜方钙钛矿,没有发现杂相.随着BBS添加量的增大,陶瓷的介电常数,品质因素以及频率温度系数均呈下降趋势,当BBS的添加量为10wt%时,1000℃下保温5h烧结的陶瓷的致密度、体积密度以及介电常数达到最大值,并具有良好的微波介电性能:ετ=62.5,Qf=1019GHz,τf=21.6ppm/℃.  相似文献   

15.
研究了CuO-B2O3助剂对Ba4Sm9.33Ti18O54陶瓷的烧结性能和介电性能的影响,结果表明:通过共添加CuO-B2O3助剂(CB),陶瓷的烧结温度可以从1350℃降低到1050℃左右,当CB添加量达到10%时,产生第二相Ba2Cu(BO3)2,研究了CB的添加,对介电性能的影响,当CB的添加量为1wt%时,有以下微波介电性能ε=62.7,Q·f=4 270 GHz,τf=-11.1 ppm/℃.  相似文献   

16.
王浩  陈文  刘涛 《硅酸盐通报》2004,23(4):44-46
用前驱体合成法制备了0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3复合钙钛矿型微波介质陶瓷,并研究了烧结温度、烧结时间对材料介电性能的影响.结果表明:CMNT陶瓷在1300℃下保温5h的条件下烧成时,获得较好的微波介电性能,微波介电性能:εr为59.5,Q·f值为29,700GHz(6.7GHz下).  相似文献   

17.
采用传统高温固相反应法制备了掺杂不同量烧结助剂CuO的Ca(Sm0.5Nb0.5)O3微波介质陶瓷,研究了CuO对Ca(Sm0.5Nb0.5)O3陶瓷的烧结性、结构及微波介电性能的影响. 结果表明:添加CuO能有效促进Ca(Sm0.5Nb0.5)O3陶瓷晶粒致密化,降低烧结温度约200℃. 添加1.5%(w) CuO, 1350℃保温4 h烧结的Ca(Sm0.5Nb0.5)O3陶瓷的介电性能较优,相对介电常数er=23.98,品质因素与频率乘积Q′f=27754.5 GHz,谐振频率温度系数tf=-2.7′10-6 ℃-1.  相似文献   

18.
采用固相反应工艺,按化学计量比在BaO-Al2 O3-SiO2(BAS)基料中添加不同质量分数x(CaO-B2 O3-SiO2,CBS)(x=0,1%,2%,3%,4%)玻璃相合成BAS陶瓷.研究不同含量的CBS玻璃相对BAS系微波介质陶瓷的结构和介电性能的影响.结果表明:CBS玻璃相能够有效促进六方相钡长石向单斜相钡长石的转变,在x=1%时,BAS六方相完全转变为单斜相,同时BAS陶瓷的烧结温度从1400℃降低至1325℃.添加适量的CBS玻璃相后,BAS陶瓷样品密度、品质因数(Q×f)值以及谐振频率温度系数(τf)得到改善.当x=1%,烧结温度为1325℃时,可获得综合性能相对较好的BAS陶瓷,其介电性能:εr=6.43,Q×f=30846 GHz,τf=-19.01×10-6℃-1.  相似文献   

19.
掺Li2O-B2O3-SiO2玻璃低温烧结MgTiO3-CaTiO3陶瓷及其微波介电性能   总被引:13,自引:2,他引:13  
童建喜  张启龙  杨辉  孙慧萍 《硅酸盐学报》2006,34(11):1335-1340
研究了Li2O-B2O3-SiO2玻璃(LBS)对MgTiO3-CaTiO3(MCT)介质陶瓷烧结特性、相组成和介电性能的影响,分析了MCT陶瓷与银电极的共烧行为.结果表明:通过液相烧结,LBS能有效降低MCT烧结温度至890℃.X射线衍射结果显示有Li2MgTi3O8、硼钛镁石以及Li2TiSiO5等新相生成.随着LBS添加量的增大,陶瓷致密化温度和饱和体积密度降低,介电常数εr品质因数与谐振频率乘积Q×f也呈现下降趋势,频率温度系数δf向负值方向移动.添加质量分数为20%的LBS的0.97MgTiO3-0.03CaTiO3陶瓷在890℃烧结4h,获得最佳性能:εr=16.4,Q×f=11 640GHz,τf=-1.5×10-6/℃.陶瓷与银电极共烧界面结合状况良好,无明显扩散.该材料可用于制造片式多层微波器件.  相似文献   

20.
胡明哲  周东祥  姜胜林  蔡雪卿  龚树萍 《硅酸盐学报》2004,32(9):1128-1133,1139
研究了Bi2O3及MnO2掺杂量对[(Pb0.5Ca0.5)0.92La0.08](Fe0.5Nb0.5)O3陶瓷结构及介电性能的影响.结果表明Bi2O3及MnO2均是良好的烧结助剂,可降低体系的烧结温度60~100 ℃,同时提高陶瓷的密度.XRD图谱证明当MnO2的质量分数≤2%时,陶瓷为钙钛矿相及焦绿石相,表明Mn4+进入主相晶格,而Bi2O3的掺杂会使体系中出现未知第三相.随MnO2的增加,陶瓷的介电常数先增加后减小,同时使品质因数及谐振频率温度系数的单调下降.Bi2O3的掺杂则会使陶瓷介电常数及谐振频率温度系数升高,而品质因数下降.Bi2O3及MnO2的联合掺杂比单一掺杂更有效地降低了陶瓷的烧结温度,达100~140 ℃,且在低温烧结条件下有比单一掺杂时更好的微波介电性能.其中当Bi2O3和MnO2的质量比k=1,2种添加物总质量分数w=1%,烧结条件为1 050 ℃,保温4 h,陶瓷的相对介电常数εr,品质因数(Q)与谐振频率(f)的乘积Qf以及谐振频率温度系数分别为91.1, 4 870 GHz和18.5×10-6/℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号