首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preliminary data were obtained on the immobilization of various heterovalent ions present in the two selected high-level nuclear waste compositions. The entire set of ions present in the waste compositions were immobilized into sodium zirconium phosphate (NZP) structure. The waste loading was in the range 5–25%. The two types of wasteforms loaded with the simulated high-level waste compositions were characterized by powder X-ray diffraction, FT-IR, TGA/DTA, and scanning electron microscopy. The difference in the compositions of the two simulated wastes was reflected in the waste loading percentage and the crystallization of the wasteforms into NZP structure. Up to 12% waste loading, single phase isostructural with NZP was obtained as a major product in the case of the first waste composition. An increase in the waste loading led to the segregation of ZrP2O7 as a secondary phase. With the second waste composition, an NZP-like phase was obtained as the major product even at 25% waste loading.  相似文献   

2.
Sodium zirconium phosphate NaZr2P3O12 (hereafter NZP) crystallizes in rhombohedral (hexagonal) symmetry with the space group R-3c. The NZP-related phase of synthetic iron substituted NZP has been prepared by partial substitution on zirconium site by Fe(III). The material has been synthesized by sintering the finely powdered oxide mixture in a muffle furnace at 1,050 °C. The polycrystalline phase of Na1.2Zr1.8Fe0.2(PO4)3 has been characterized by its typical powder diffraction pattern. The powder diffraction data of 3,000 points have been subjected to general structural analysis system (GSAS) software to arrive at a satisfactory structural fit with R p = 0.0623 and R wp = 0.0915. The following unit cell parameters have been calculated: a = b = 8.83498(18) ?, c = 22.7821(8) ? and α = β = 90.0° γ = 120.0°. The structure of NZP consists of ZrO6 octahedra and PO4 tetrahedra linked by the corners to form a three-dimensional network. Each phosphate group is on a two-fold rotation axis and is linked to four ZrO6 octahedra. Each zirconium octahedron lies on a threefold rotation axis and is connected to six PO4 tetrahedra. AC conductivity of the solid solution has been measured between 303 and 773 K. The material exhibits temperature-dependent enhancement of ionic conduction by ≈400 times at elevated temperatures. The activation energies show significant change in slope at 1,000/T = 2.23(448 K).  相似文献   

3.
In order to study the phase change and stability of the NASICON structure, sodium, lithium and magnesium ions were chosen to substitute the zirconium ion at octahedral sites in the NASICON network. It was found that the zirconium ion can not be replaced by these ions. All the synthesized products are Na1+xZr2SixP3?xO12 and phosphate salts. NASICON immersed in liquid sodium at 300°C also results phosphate salt and ZrO2. It was found that an appropriate excess of sodium phosphate in NASICON will improve the chemical stability, corrosion against sodium and mechanical properties.  相似文献   

4.
A structural model is proposed to describe the highly anisotropic thermal expansion in the sodium zirconium phosphate NaZr2P3O12 structure as a result of the thermal motion of the polyhedra in the structure. In the proposed model the rotations of the phosphate tetrahedra are coupled to the rotation of the zirconium octahedra. Of the two versions considered, the first one allows angular distortions to occur only in the ZrO6 octahedra; the second one permits all polyhedra to be distorted.  相似文献   

5.
《Materials Research Bulletin》1987,22(8):1125-1130
Samples of cubic stabilized ZrO2 have been prepared by the code-composition of nickel nitrate and zirconyl nitrate at 500°C. A comparison of the stability towards reduction of the bulk NiO and the Ni(II) in the cubic stabilized ZrO2 deomstrates the influence of the stabilization of cubic ZrO2 with Ni(II).  相似文献   

6.
Fine TiO2 and ZrO2 powders were prepared by hydrothermal synthesis at 150 and 250°C (10 min, 1 h, 3 h) from aqueous titanyl and zirconyl salts and amorphous titanyl and zirconyl hydroxide gels with and without ultrasonic activation. The synthesized materials were characterized by x-ray diffraction, scanning and transmission electron-microscopic techniques, and nitrogen capillary adsorption measurements. The results demonstrate that ultrasonic activation of the hydrothermal process markedly accelerates the crystallization rates of the amorphous titanyl and zirconyl hydroxides and raises the content of thermodynamically stable phases in the reaction products. It is also shown that hydrothermal treatment of amorphous cobalt(II) hydroxide leads to its crystallization, whereas ultrasonic–hydrothermal treatment results in partial Co(II)-to-Co(III) oxidation, yielding a mixture of Co(OH)2 and Co3O4.  相似文献   

7.
Erbium zirconium phosphate Er0.33Zr2(PO4)3, a member of the family of structural analogs of NaZr2(PO4)3 (NZP), was prepared by the sol-gel process and studied by X-ray phase analysis, IR spectroscopy, and differential scanning calorimetry. The behavior of erbium zirconium phosphate on heating in the temperature interval from 25 to 625°C was studied by high-temperature X-ray diffraction. Expansion and contraction along different crystallographic directions and contraction of the structure as a whole were found. The overall contraction is due to higher contribution of the negative axial thermal expansion coefficients α a and α b to αav and hence to the volume expansion of the phosphate. On heating to 900°C, the NZP structure is preserved.  相似文献   

8.
Single phase sodium zirconium orthophosphates [NaZr2(PO4)3 and Na2Zr(PO4)2] and zirconium diphosphate (ZrP2O7) have been synthesized. The measured linear expansion coefficient of NaZr2(PO4)3 was rather small only reaching a value of 0.16% at 800 °C. The expansion coefficients of Na2Zr(PO4)2 and ZrP2O7 were also rather small and were 1.4 and 1.0% respectively at 800 °C. These phosphates showed different behaviour depending on the type of thermal pretreatment before the measurement of the expansion coefficient.  相似文献   

9.
Sodium zirconium phosphate (NZP) is a potential material for immobilization of nuclear effluents. The existence of cesium containing NZP structure was determined on the basis of crystal data of solid solution. It was found that up to ~9.0 wt% of cesium could be loaded into NZP formulations without significant changes of the three-dimensional framework structure. The crystal chemistry of Na1−x Cs x Zr2P3O12 (x = 0.1–0.4) has been investigated using General Structure Analysis System programming. The CsNZP phases crystallize in the space group R-3c and Z = 6. Powder diffraction data have been subjected to Rietveld refinement to arrive at a satisfactory structural convergence of R-factors. The unit cell volume and polyhedral (ZrO6 and PO4) distortion increase with rise in the mole% of Cs+ in the NZP matrix. The PO4 stretching and bending vibrations in the infrared region have been assigned. SEM, TEM, and EDAX analysis provide analytical evidence of cesium in the matrix.  相似文献   

10.
Thermal expansion of the sodium zirconium phosphate (NZP) family of compounds A1/2M2(PO4)3 (A = Ca or Sr; M = Ti, Zr, Hf or Sn) has been measured in the temperature range 298–1273 K by high-temperature X-ray powder diffractometry. Some of the compounds in the series (calcium zirconium phosphate and calcium hafnium phosphate) display the typical thermal expansion behaviour of NZP compounds, namely expansion along the hexagonal c axis and contraction along the a axis. The other compounds, depending on their interstitial and framework composition, behave differently. The observed axial thermal expansion and contraction behaviour is explained on the basis of the crystal chemistry of the compounds. Low-expansion compounds in this series are identified and their expansion anisotropy examined. Infared spectra of the compounds are reported. Differential scanning calorimetry measurements on the tin compounds indicate the occurrence of a diffuse phase transformation at high temperatures.  相似文献   

11.
The crystallographic nature of NaCe0.2Zr1.8P3O12, NaSe0.2Zr1.8P3O12, and NaLa0.13Ce0.14Se0.15·Zr1.58P3O12 phases has been investigated with the aim of developing methods for radionuclide immobilization into sodium zirconium phosphate (NZP) phase. The phases have the NZP structure, space group \(R\bar 3c\) , Z = 6. Powder diffraction data have been subjected to Rietveld refinement, and satisfactory structural convergence of R-factors was achieved. The PO4 stretching and bending vibration bands in the IR region have been assigned.  相似文献   

12.
Lead zir conyl oxalate hexahydrate (LZO) and lead titanyl zirconyl oxalate hydrate (LTZO) are prepared and characterized. Their thermal decompositions have been investigated by thermoanalytical and gas analysis techniques. The decomposition in air or oxygen has three steps — dehydration, decomposition of the oxalate to a carbonate and the decomposition of carbonate to PbZrO3. In non oxidising atmosphere, partial reduction of Pb(II) to Pb(0) takes place at the oxalate decomposition step. The formation of free metallic lead affects the stoichiometry of the intermediate carbonate and yields a mixture of Pb(Ti,Zr)O3 and ZrO2 as the final products. By maintaining oxidising atmosphere and low heating rate, direct preparation of stoichiometric, crystalline Pb(Ti,Zr)O3 at 550°C is possible from the corresponding oxalate precursor.  相似文献   

13.
We have studied phase formation in calcium-modified Al2O3–ZrO2–CeO2 nanopowders during sol–gel synthesis. The results demonstrate that heat treatment of the nanopowders first leads to the formation of a zirconium dioxide-based solid solution stabilized with cerium cations. Raising the heat treatment temperature helps the crystallization of corundum, a stable phase of aluminum oxide, to reach completion. In the temperature range 1400–1550°C, we observe the formation of a second aluminum-containing phase: calcium cerium hexaaluminate consisting of long prismatic grains.  相似文献   

14.
The products obtained by ion exchange of zirconium phosphate loaded with Ag+ (from 13% to 96% of conversion) have been characterized by thermal and X-ray methods. The materials maintain a layered structure until around 550–600°C, with a d002 of about 7,6–7,8 A. At low Ag conversion solid solutions can be obtained. For all samples, above 600°C the layered structure disappears and the phase AgZr2(PO4)3 is produced. Other phases, ZrP2O7, Ag4P2O7 or Ag3PO4 (depending on the initial composition) are formed together with AgZr2(PO4)3. The conditions of formation and possible transformation of some of these phases are discussed.  相似文献   

15.
The alteration of crystallization behavior, microstructure, and thermal properties of fluorophlogopite mica-containing glass–ceramics by nucleating agent is systematically studied. TiO2, TiO+ ZrO2, and ZrO2 have been doped as the nucleating agents in the SiO2–MgO–Al2O3–B2O3–K2O–MgF2 (BMAPS) glass system and prepared by the melt-quench technique. The glass without nucleating agent is also prepared to ascertain the influence of nucleating agent. Addition of nucleating agents effectively increases the softening as well as glass transition temperatures. From the DSC study, it is found that the fluorophlogopite mica crystallization exotherm exhibited in the temperature range 800–850 °C and the activation energy varies in the range 167–182 kJ/mol. The opaque mica glass–ceramics are derived from these BMAPS glasses by a controlled heat treatment process and heat treatment at 1050 °C is found to be optimum. The mica crystals were identified as fluorophlogopite for all the four BMAPS glasses by X-ray powder diffraction (XRD) and subsequently confirmed by FTIR spectroscopy. Excellent matching with fluorophlogopite crystal was obtained in Zirconia-containing glass–ceramic as perceived from the XRD and FTIR studies. The microstructure of interlocked card-like mica flake crystals is found to form as seen from scanning electron microscopy, and such microstructure is obtained when ZrO2 has been used as nucleating agent. Glass–ceramic without nucleating agent possesses Vickers hardness value 4.58 Gpa and it is increased with addition of the nucleating agent (5.67–6.56 GPa), ZrO2-containing glass–ceramic possess lower hardness (5.67 GPa) and better machinability. Therefore, ZrO2 is the most efficient nucleating agent to generate fluorophlogopite mica in these glass–ceramics useable for SOFC applications.  相似文献   

16.
Heating sodium ion exchanged zirconium phosphates, ZrNaxH2?x(PO4)2, yields mixtures of phases which include NaZr2(PO4)3. When x is less than one, the second phase is ZrP2O7. At values of x > 1 the products are Zr(NaPO4)2, NaZr2(PO4)3 and possibly NaPO3 + Na2O. At x = 1 the products are NaZr2(PO4)3 + NaPO3. Hydrothermal treatment of ZrNaxH2?x(PO4)2 also yields triphosphates which contain some protons and zeolitic water. Zirconium phosphate treated hydrothermally in the presence of sodium silicates yields sodium zirconium silicophosphates.  相似文献   

17.
Barium zirconium phosphate (BaZr4P6O24), a member of a new family of low-thermal-expansion materials known as NZP, was synthesized by the solution sol-gel method, and sintered ceramics were prepared at 1100–1600 °C. The effect of sintering parameters such as time and temperature on the microstructure and phase composition was studied. BaZr4P6O24 is known to possess anisotropy in its axial thermal expansions, which usually causes microcracking in the sintered bodies when cooled. The microcracking activity of the sintered samples was examined by acoustic emission measurements.  相似文献   

18.
Al2O3–ZrO2 composites containing nominally equal volume fraction of Al2O3 and ZrO2 have been synthesized through combined gel-precipitation technique. Subsequently the gels were subjected to three different post gel processing treatments like ultrasonication, ultrasonication followed by water washing and ultrasonication followed by alcohol washing. It was observed that while in unwashed samples crystallization took place at low temperature, crystallization was delayed in the washed gels. The phase transition of ZrO2 in the calcined gels followed the sequence; amorphous → cubic ZrO2 → tetragonal ZrO2 → monoclinic ZrO2. On the other hand, phase transition in alumina followed the sequence amorphous to γ-Al2O3, the transition taking place at 650 °C. No α-Al2O3 could be detected even after calcination at 950 °C. However, all the sintered samples had α-Al2O3. In spite of high linear shrinkage (19–21%) during sintering, the sintered sample had density of only above 70% for all the four varieties of the powders. However, in spite of the low sintered density of the pellets, 31% tetragonal zirconia could be retained after sintering at 1400 °C and it reduced to about 16% at 1600 °C.  相似文献   

19.
Organic precursors containing Al and Zr atoms were synthesized from an aluminium chelate compound and zirconium n-butoxide. A ZrO2-Al2O3 composite powder was prepared by the thermal decomposition of these precursors. An amorphous phase exists to higher temperatures for this ZrO2-Al2O3 powder than for a comparable powder prepared from aluminium sec-butoxide and zirconium n-butoxide. In addition the tetragonal ZrO2 phase was stabler in this ZrO2-Al2O3 powder than in a comparison powder. The ZrO2 grains were 50–500 nm in diameter and were homogeneously dispersed in the Al2O3 matrix after heating at 1400 °C.  相似文献   

20.
In this study, ZrP2O7 was synthesized by the solid state reaction of ZrO2 and NH4H2PO4 at 900 °C. Then, in set 1; 10, 5, 1, 0.5, 0.1, 0.05, 0.03% previously prepared Sr2P2O7 were doped into ZrP2O7, and Sr2P2O7 slightly affect the unit cell parameter of cubic ZrP2O7 (a = 8.248(6)–8.233(8) Å). The reverse of this process was also applied to Sr2P2O7 system (set 2). ZrP2O7 changes the unit cell parameters of orthorhombic Sr2P2O7 in between a = 8.909(5)–8.877(5) Å, b = 13.163(3)–13.12(1) Å, and c = 5.403(2)–5.386(4) Å. Analysis of the vibrations of the P2O 7 4? ion and approximate band assignments for IR and Raman spectra are also reported in this work. Some coincidences in infrared and Raman spectra both sets were found and strong P–O–P bands were observed. Surface morphology, EDX analysis, and thermoluminescence properties of both sets were given the first time in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号