首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于划分的数据挖掘K-means聚类算法分析   总被引:1,自引:0,他引:1  
为提升数据挖掘中聚类分析的效果,在分析数据挖掘、聚类分析、传统K-means算法的基础上,提出一种改进的K-means算法。首先将整体数据集分为k类,然后设定一个密度参数为■,该密度参数反映数据库中数据所处区域的密度大小,■值与密度大小成正比,通过密度参数优化k个样本数据的聚类中心点选取;依据欧几里得距离公式对未选取的其他数据到各个聚类中心之间的距离进行计算,同时以此距离为判别标准,对各个数据进行种类划分,从而得到初始的聚类分布;初始聚类分布得到之后,对每一个分布簇进行再一次的中心点计算,并判断与之前所取中心点是否相同,直到其聚类收敛达到最优效果。最后通过葡萄酒数据集对改进算法进行验证分析,改进算法比传统K-means算法的聚类效果更优,能够更好地在数据挖掘当中进行聚类。  相似文献   

2.
在线学习是近年来随着互联网的发展而逐渐兴起的一种学习方式,它的便捷性和丰富的学习资源吸引了越来越多的学习者。随着在线学习平台日益普及,海量的用户数据也随之产生。如何从这些数据中提取有价值的信息,促进教育教学质量提升是当前值得思考的重要课题。文章介绍了基于K均值聚类算法(K-means Clustering Algorithm, K-means)的在线学习行为聚类分析方法,为在线学习平台提供了重要的数据分析和应用支持,帮助教师及平台管理者及时调整教学模式和教学策略,以提升学习者的在线学习效果。  相似文献   

3.
基于改进K-means聚类算法的室内WLAN定位研究   总被引:1,自引:0,他引:1  
位置指纹法定位中所建立的位置指纹库能否正确反映指纹信号与位置之间的映射关系将影响最终定位效果。本文将一种改进的K-means聚类算法运用于WLAN室内指纹数据库的建立,较之传统K-means聚类算法所建立的指纹数据库,采用了改进K-means聚类算法所建立起来的指纹数据库优化了初始聚类中心选择方法及准则函数,避免了被聚类的指纹数据陷入局部解现象。实验结果表明:本文所提算法建立的指纹数据库可提高WLAN室内定位精度,缩短定位时间。  相似文献   

4.
一种改进的特征加权K-means聚类算法   总被引:4,自引:0,他引:4  
提出了一种改进的特征加权K-means聚类算法.该算法首先基于数据样本分布选取初始聚类中心,然后设计特征加权的K-means聚类算法.实验结果证明,该算法能产生质量较高的聚类结果,并且能处理数值、符号两类数据.  相似文献   

5.
王东  王理想 《半导体光电》2014,35(5):904-907
提出了一种基于距离相似性K-means的红外图像聚类算法。该算法对通过Isomap算法降维后的空间点,进一步进行聚类;算法中引入了密度因素,通过距离相似性的差异进一步排除孤立点和选取初始聚类中心,使数据内部的紧凑性得到加强。经过实验证明,改进后的方法比原方法更有效,时间复杂度也大幅度降低。  相似文献   

6.
随着等级测评工作的定期进行,等级测评过程中会不断产生并积累海量的测评数据,但是从以测评报告形式存在的测评数据中无法有效地提取出有价值的信息,无法为后续的等级保护工作形成参考指导。利用K-means聚类算法对等级测评数据进行了分析。首先,介绍了等级测评的概念及基本内容;然后,阐述了K-means聚类算法理论;最后,详细地介绍了基于K-means聚类算法的等级测评数据分析的具体流程,为等级测评数据的充分利用提供了一定的参考。  相似文献   

7.
《现代电子技术》2019,(8):145-150
针对传统K-means聚类算法对高维非线性数据聚类效果不佳、聚类时间消耗大的问题,文中对高维数据的预处理进行研究,提出一种基于深度信念网络(DBN)的K-means聚类算法(DBNOK)。此算法首先使用多层受限玻尔兹曼机(RBM)对数据进行特征学习,并将学习到的隐含特征进行K-means相关参数和初始聚类中心进行交叉迭代优化。用DBNOK算法分别在低维数据集和高维数据集上进行实验,结果表明,DB-NOK算法聚类准确率优于标准的K-means算法和模糊均值聚类(FCM)算法。  相似文献   

8.
提出一种适用于大型数据集的分布式聚类算法。该算法以传统的K-means算法为基础进行合理的改进,使之更适用于分布式环境,并从算法的复杂度分析,将该算法与传统的集中式K-means算法及其他分布式算法进行比较。实验表明,该算法在保持了集中式K-means算法所有必要特性的同时,提高了数据处理速度。  相似文献   

9.
针对传统的K均值聚类分析,不考虑对象中每个变量在聚类过程中体现作用的不同,而是统一看待,用这样计算的距离来表示两个对象的相似度并不确切。文中提出了一种基于距离度量的聚类算法,算法使用新的距离度量代替了K均值聚类算法的欧式距离,应用新的距离度量之后,数据点的权重不再只为1或0,而是由系数来确定,这就将硬划分转化为软划分。最后经过实验证明了改进的聚类算法比传统的K均值聚类收敛速度有了很大提高,提高了算法的执行效率。  相似文献   

10.
随着网络技术的飞速发展,当今社会的人们将面临越来越多的数据,如何从日常生活中的数据挖掘出有利用价值的商业数据,成为各大中小型企业关心的主要话题。由此而生的数据挖掘技术也成为我们研究的重点,文章主要介绍了数据挖掘中的聚类分析研究方法以及对传统聚类算法的改进和优化。  相似文献   

11.
传统的聚类算法,已被人们熟知并广泛应用,但是还存有缺点,因为没有考虑到数据簇间可能存在交集,所以针对此问题,文中以K-means算法为例,提出了对K-means聚类结果出现交集的处理方法。文中方法将聚类后的数据簇假设为圆形,判断数据簇间是否存在交集,并将交集中数据点提取出来。理论分析与实验表明,该算法大大提高了聚类结果的准确性和实用性。  相似文献   

12.
本文对传统的K-means聚类算法进行了深入的分析研究,发现了算法当中的一些缺陷和漏洞,并且找出可以改进K-means聚类算法的方法,使聚类分析的结果更具有实际意义,保证了聚类结果的高质量。  相似文献   

13.
K-means聚类算法在随机选择的初始聚类中心的基础上进行聚类,其聚类效果会因为初始聚类中心的不确定性而不稳定。为了优化其聚类效果,提出了基于近邻传播算法(AP算法)的K-means聚类优化算法(APK-means)。该算法首先通过近邻传播算法生成若干个初始聚类,然后依序选择k个聚类规模最大的聚类中心作为K-means聚类算法的初始聚类中心,接着运行K-means聚类。算法有效性分析和实验结果验证了该算法有效优化了K-mean算法的聚类稳定性和有效性。  相似文献   

14.
通过对用户手机套餐的消费信息进行精准聚类分析,从而准确地对用户套餐做出改进,可以极大提高用户的忠诚度.首先对传统的K-means算法进行改进,提出HCS-Kmeans算法.对传统的K-means算法的改进主要包括两个方面:一是对相似性度量做加权处理;二是对初始聚类中心的选择策略进行优化.基于HCS-Kmeans算法对移...  相似文献   

15.
目前常见的车牌识别算法有神经网络算法,模板匹配算法等,无论何种车牌识别算法,在车牌发生污损情况时,其正确识别率均有较大程度的下降。为解决这一问题,提出了一种基于K-means聚类算法的车牌去污算法。采用人为控制车牌污损程度的方法定量研究本算法的去污有效性,最终发现采用该算法恢复的污损车牌图像相比于恢复前上升近一倍。在污损程度较小时,采取该算法去污后CNN网络识别正确率可以提升约50%;在污损程度较大时,采取该算法去污后CNN神经网络识别正确率可以上升一倍。  相似文献   

16.
针对传统的K-means算法对初始聚类中心的敏感很大,极易陷入局部最优值,基于遗传算法的K-means聚类算法由于个体的多样性不足而常出现早熟等现象,采用遗传模拟退火算法优化初始聚类中心点后进行K-means聚类,并提出了一种新的用于评价聚类结果的适应度函数,该函数更为准确地反映类内距离和类间距离.实验结果表明,该方法能获得更好的聚类结果.  相似文献   

17.
蔺小清 《电子设计工程》2021,29(18):181-184,193
在分析了在线学习行为需求及K-means聚类算法原理的基础上,完成了一种基于K-means聚类算法的在线学习行为分析方法的设计,能够从大量用户学习行为数据中挖掘出有价值的信息,通过聚类分析采集到的用户在线学习行为路径数据实现其在线学习行为的获取,并从大数据中挖掘用户学习行为习惯,为提高混合式教学质量及效率提供参考.  相似文献   

18.
19.
区域健康数据的特点是其具有海量性和高维性,而使用传统K-means聚类方法无法应对高维度的数据处理,不但容易造成结果误差,且会使算法的执行效率较低、时间开销较大。针对上述问题,文中对传统K-means聚类方法进行了深入改进,在加入模糊项以保证其聚类效果的基础上,使用粗糙集理论对高维数据属性的权重值进行确定,通过对其数据属性数量进行简化,从而保证模型的精确度与执行效率。数值实验结果表明,文中所提算法在处理高维数据时,其准确度相较对比算法提升了约5%,算法的执行时间相较传统算法缩短了约50%,证明了该算法对高维数据进行聚类处理的有效性。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号