首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
徐红 《江西化工》2008,(1):91-93
制药废水成分复杂、毒性大、色度深,而且废水水质、水量波动较大,是处理难度较大的工业废水之一。针对制药废水的这些特点,采用水解酸化-ABR-SBR组合工艺对制药工业废水进行处理,处理水量429.2m^3/d。监测结果表明,处理后主要污染物BOD5〈30mg/L、CODmn〈150mg/L、NH3-N〈25mg/L、AOX〈500mg/L。各项指标完全符合国家排放标准(GB8978-1996)二级标准。实际运行显示,该工艺处理效果稳定,耐负荷冲击性强,工艺组合合理,具有广阔的工业应用前景。  相似文献   

2.
<正>化学制药企业生产废水是环境污染最严重、最难处理的工业废水之一。近日,青海省有关专家完成了一项科研成果,将此类废水"变废为宝",实现了再生产过程中的循环利用。青海制药厂有限公司是生产多品种多剂型的综合化学制药企业,在化学制药生产过程中产生的废水含盐量高,废水水质成分复杂,进行生物化学处理难度非常大。记者在企业采访了解到,长期以来,企业采用喷洒焚烧的方法处理工业废水,但这一技术存在能耗高、产生的大气污染物仍需进一步  相似文献   

3.
简要介绍了江西某制药厂高浓度制药废水处理工程实例以及耐盐菌改良处理流程后污染物去除率的变化。企业根据工业废水特点,采用pH调节+臭氧预处理+水解酸化+IC反应器+A/O+BAF的主体处理工艺,并在稳定运行后在A/O段加入耐盐菌。运行实践表明,该工艺路线设计合理,运行稳定,在A/O段加入耐盐菌后,该处理阶段COD和氨氮去除率明显提升,最终出水水质稳定达到《化学合成类制药工业水污染物排放标准》(GB 21904—2008)的要求。  相似文献   

4.
正1引言随着社会经济的飞速发展,近年来制药行业不断壮大,已取得了重大成就,但随之产生的制药工业废水成为困扰企业和政府的巨大难题。制药废水的特点主要表现为水质各组分比例不稳定、成分复杂、有毒有害污染物浓度高、色度高、可生化性差及难降解物含量高等,此外水质和水量也非常不稳定。所以如何处理制药废水,使之达到《污水综合排放标准》  相似文献   

5.
印刷线路板废水处理与回用工艺   总被引:2,自引:0,他引:2  
印制线路板工业废水排放量大,废水中污染物种类多、成份复杂。根据各工序污染物的种类以及生产工序清洗用水标准,将废水分为三类进行处理。介绍了废水处理和一般废水回用深度处理工艺。将该工艺应用于印制线路板工业废水处理,结果表明,废水回用率达到或接近60%,电导率低于150μS/cm,pH=6.5~8。再生回用水水质优于自来水,可满足生产线用水水质要求。  相似文献   

6.
采用生物流化床—高级催化氧化工艺处理制药废水,介绍了制药废水处理工程的工艺流程、工艺设计、调试方法、处理效果和工程效益。运行结果表明,该系统处理效果好且运行稳定,出水水质满足《混装制剂类制药工业水污染物排放标准》(GB 21908—2008)表2标准。  相似文献   

7.
抗生素制药废水处理工程实例   总被引:1,自引:0,他引:1  
山东新时代药业有限公司抗生素生产园区采用预处理—水解酸化—生物强化一级处理—Fenton氧化—曝气生物滤池深度处理组合工艺处理抗生素制药废水,分析了工艺流程、运行参数和运行效果。出水水质达到《山东省南水北调沿线水污染物综合排放标准》(DB 37/599—2006)重点保护区域(修改通知单)标准。  相似文献   

8.
针对污水处理厂进水受工业废水影响导致COD_(Cr)难去除的问题,通过现场中试,提出增加活性砂过滤-臭氧接触氧化的深度处理工艺,可将出水水质由GB 18918—2002《城镇污水处理厂污染物排放标准》一级B标准提高到一级A标准。重点介绍了升级改造工程方案设计,给出了设计参数及投资运行成本。  相似文献   

9.
制药工业废水的特点及处理技术   总被引:1,自引:0,他引:1  
郭会灿 《河北化工》2011,34(6):29-30,37
制药工业废水分为生物制药工业废水和化学制药工业废水,两类废水由于生产工艺不同有各自的特点。目前处理制药工业废水技术可分为生物处理技术、物化处理技术和化学处理技术。  相似文献   

10.
黄强南 《广东化工》2012,39(8):60-61
通过将BAF(曝气生物滤池)应用于制药废水的升级改造,提高了出水水质,加速了制药废水深度处理技术的发展,实现了该行业污染物的减排,具有深远的社会意义。根据运行状况显示,出水水质优于《混装制剂类制药工业水污染物排放标准》,达到了预期升级改造的效果。  相似文献   

11.
陈建文 《广东化工》2006,33(6):79-81
乙烯酮(双乙烯酮)是十分重要的化工中间体,其下游产品较多。江苏某化工厂开发生产乙烯酮(双乙烯酮)下游产品三十多个,年生产规模三万多吨,是国内以乙烯酮(双乙烯酮)为中间体生产精细化学品的综合骨干企业。针对乙烯酮(双乙烯酮)下游产品废水特点,该厂结合企业实际,开展了产品优化,结构调整,清洁生产,资源循环利用,节水降耗等工作,从源头削减了污染物的生产。同时投资二千多万元新建预处理装置三套,6000m3/d废水生化处理装置一套,使全厂乙烯酮(双乙烯酮)下游产品的废水得到了有效的治理。  相似文献   

12.
13.
14.
姬波  刘奇峰 《河南化工》2005,22(3):43-44
利用组件技术开发化工原理实验课件,给出了系统层、组件库层和应用层的架构划分。重点讨论了组件库的设计,给出了流体阻力这一典型实验的实现描述。实践证实,基于组件技术可以提高仿真实验的开发效率。  相似文献   

15.
周云  温集强 《水泥》2007,(10):29-30
我厂3号回转窑(Φ4m×60m)生产线在1996年年底由SP窑(产量912t/d)改为NSP窑(产量1320t/d),预分解系统为四级旋风预热器带离线式分解炉  相似文献   

16.
阐述并比较了几种加压设备在乙炔加压清净过程中的性能和特点。  相似文献   

17.
The miscibility of various amorphous polybutadienes with mixed microstructures of 1,4 addition units (cis, 1,4 and trans 1,4) and 1,2 addition units have been investigated. The studies here involved optical transparency, differential scanning calorimetry, and small angle light scattering. It was found that a 90 percent (cis) 1, 4 addition polybutadiene was immiscible with high (91 percent) 1,2 addition polybutadiene. Reduction of the 1,2 content to 71 percent induced an upper critical solution temperature (UCST) with the cis 1,4 polymer. Polybutadienes with 50 percent and 10 percent 1,2 contents were miscible above the crystalline melting temperature of the cis 1,4 polybutadiene. Immiscibility of the 91 percent 1,2 addition polymer was also found with a 10 percent 1,2 polybutadiene. The latter polymer also exhibits an UCST with the 71 percent 1,2 polymer. The results are used to interpret the characteristics of blends of polybutadienes of varying microstructure.  相似文献   

18.
唐蕾 《粉煤灰》2013,(5):5-6
以F类粉煤灰为例,详细介绍了测定粉煤灰中烧失量的步骤、计算数学模型、影响测量不确定度的因素以及各项测量不确定度分量评定,人员、设备、材料、方法、环境都是影响测量不确定的因素。  相似文献   

19.
水泥水化热是中、低热水泥和核电工程用水泥的一项关键的技术指标。全球范围内测定水泥水化热的方法有溶解法、直接法/半绝热法、等温传导量热法三种。本文总结了中、美、欧相关方法标准,对其测试原理、仪器设备、试验过程等方面进行了比对,并对其在领域的应用做了简单的概括。  相似文献   

20.
Conclusions It is significant that the purification on a single passage of viscose through porous ceramic corresponds to the result of a two-stage filtration of it in industrial filter-presses with standard fillings.Kiev Combine. Kiev Technological Institute of Light Industry. Translated from Khimicheskie Volokna, No. 3, pp. 20–22, May–June, 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号