首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
刘旭辉  李光辉  刘振宇 《钢铁》2019,54(7):77-82
 为了获得较大的沉淀强化增量,采用热模拟试验研究了UFC终冷温度和二阶段冷却速度对一种V Ti微合金钢组织和硬度的影响规律。结果表明,协同控制UFC终冷温度和二阶段冷却速度可显著优化V Ti微合金钢的组织性能。UFC终冷温度为750、700和650 ℃时,获得全铁素体组织的临界二阶段冷却速度分别为1.0、1.0和0.2 ℃/s。UFC终冷温度由750降低至650 ℃时,在二阶段冷却速度为0.2~1.0 ℃/s条件下,可将铁素体晶粒由10.5细化至8.4 μm,二阶段冷却速度为5.0 ℃/s时,可将铁素体晶粒由10.5细化至5.1 μm。在750和700 ℃较高UFC终冷温度条件下,适当提高二阶段冷却速度,在650 ℃较低冷却速度条件下,适当降低二阶段冷却速度,均可有效提高试验钢的维氏硬度,试验钢的最大维氏硬度可达到295HV。  相似文献   

2.
 采用热模拟试验机研究了X100管线钢的连续冷却相变规律和控轧控冷工艺中不同冷却制度下微观组织特征及显微硬度的变化规律。结果表明,随着冷却速度的升高和终冷温度的降低,试验钢微观组织逐渐细化,其中粒状贝氏体含量不断减少而板条贝氏体含量逐渐增加,显微硬度也随之增加;M/A岛含量随着冷却速度的增加而减小,随着终冷温度的降低呈现先降低后增加的“V”型趋势,且在340℃获得最低值。  相似文献   

3.
采用不同控轧控冷技术,以不同轧制工艺生产的20 mm厚的钢板进行试验。利用金相显微镜、扫描电镜对其微观组织及夹杂物进行表征分析,拉伸试验机、冲击试验机对力学性能进行分析。结果表明:在不同的控轧控冷条件下,微观组织主要以铁素体为主,并存在少量的珠光体,晶粒度8级左右;强度在432~489 MPa之间,延伸率28.5%~36.5%之间;II开温度、终轧温度、入水温度基本保持不变的情况下,随着入水温度降低,屈服强度和抗拉强度逐渐降低;II开温度、终轧温度、入水温度基本保持不变,随着入返红度降低,抗拉强度逐渐降低,屈服强度先降低,随后增加,冲击功和延伸率逐渐增加;返红温度从622℃降低到565℃时,珠光体呈现退化趋势。  相似文献   

4.
利用Gleeble1500热模拟试验机进行了K60、X70管线钢两阶段轧制工艺模拟试验,研究不同冷却速度、终冷温度对K60、X70金相组织和显微硬度的影响。结果表明,随着冷速的提高,金相组织细化。在终轧温度850℃,冷速17℃/s,终冷温度540℃时可获得准多边形铁素体(QF)和粒状贝氏体(GBF)为主的混合组织。  相似文献   

5.
文章针对包钢2250mm热轧产线采用两段式冷却,设定不同的终冷温度对中碳合金钢的显微组织和性能进行了研究。结果显示,随着终冷温度由500℃降至100℃,试验钢金相组织由“铁素体+珠光体”组织逐渐演变为“铁素体+马氏体”组织,屈服强度与抗拉强度迅速上升,延伸率逐渐下降,当终冷温度达到320℃时,试验钢开始发生了马氏体转变。应市场需求,终冷温度设定为320℃时,试验钢在保证了力学性能的基础上,满足了客户45°冷弯试验性能合格。  相似文献   

6.
通过热模拟实验,研究了冷却工艺参数对Ti微合金化高强钢组织和硬度的影响.结果表明:当终冷温度为700℃时,随着冷却速度的增大,铁素体和珠光体组织得到了显著细化,实验钢硬度增加;随着终冷温度的降低,多边形铁素体晶粒尺寸呈减小趋势,铁素体和珠光体含量逐渐降低,珠光体片层间距逐渐减小,贝氏体含量增加,相变强化和细晶强化共同作...  相似文献   

7.
工艺参数对X80管线钢组织和硬度的影响研究   总被引:1,自引:0,他引:1  
利用MMS-300热模拟试验机模拟研究了管线钢两阶段轧制的控轧控冷工艺。通过控制不同的终轧温度和终冷温度,并在17℃/s冷却速度下控制冷却,研究其对管线钢显微组织和显微硬度的影响。研究结果表明,在终轧温度810℃、终冷温度540℃时可获得以针状铁素体、多边形铁素体以及M/A岛为主的混合组织。  相似文献   

8.
为保证大输量X80M管线钢高强度的同时进一步提高其低温韧性,实现强韧性良好匹配,采用Gleeble-3800型热模拟试验机对其进行模拟轧制研究。利用热膨胀法结合金相法建立X80M管线钢的动态CCT(Continuous Cooling Transformation)曲线,并通过OM、SEM、硬度检测等分析方法,研究了冷速、终冷温度等冷却工艺参数对其组织和硬度的影响。研究发现,随冷速增大,其组织发生多边形铁素体(PF)+珠光体(P)→粒状贝氏体(GB)→针状铁素体(AF)→贝氏体铁素体(BF)的转变,维氏显微硬度也逐渐增加;当冷速为15~25℃/s时可获得以细小均匀AF为主和弥散分布M/A(马氏体-奥氏体)岛组成的理想显微组织;终冷温度对其相组成有明显的影响,随着终冷温度的降低,M/A岛尺寸变小,数量增多,组织逐渐细化。将试验研究与生产实践相结合,最终设定工业化TMCP参数为终轧温度780℃+终冷温度360℃+冷速20℃/s,得到的X80M管线钢板卷具有高强度和优异低温韧性,满足其工程技术要求,并成功应用于西气东输四线重大管道工程。本研究为高强高韧管线用钢的研发提供了技术参考,有力支撑了...  相似文献   

9.
在实验室研究了不同卷取温度对C-Si-Mn-Al热轧高强度搅拌罐用钢组织性能的影响。采用激光共聚焦显微镜(LSCM)、扫描电子显微镜(SEM)、电子背散射衍射(EBSD)等技术对试验钢在不同卷取温度下的组织、力学性能进行对比研究。研究结果表明,试验钢在580、550 ℃卷取得到铁素体和珠光体组织;在400 ℃卷取得到铁素体和贝氏体组织;在300 ℃低温卷取得到铁素体、贝氏体和马氏体组织;在150 ℃低温卷取得到铁素体和马氏体组织。随着卷取温度的降低,试验钢的抗拉强度与硬度逐渐增大,伸长率逐渐降低。试验钢在300 ℃模拟卷取时抗拉强度达到1 029 MPa,维氏硬度为342.6;在150 ℃模拟卷取时抗拉强度高达1 265 MPa,维氏硬度达到360.7,屈强比达到最低,仅为0.58。  相似文献   

10.
邹航  刘曼  徐光 《钢铁》2021,56(9):144-150
 为了研究轧后不同冷却条件对高强低碳贝氏体钢组织和性能的影响,采用热模拟试验、扫描电镜、透射电镜和拉伸试验等手段,阐明不同冷却条件下高强低碳贝氏体钢的组织和性能变化规律。结果表明,在终冷温度为510 ℃时,组织以粒状贝氏体为主,终冷温度为450 ℃时以板条状贝氏体为主,前者组织中具有更多岛状马氏体;随着冷却速率提高,粒状贝氏体和板条状贝氏体尺寸细化,岛状马氏体减少。此外,不同冷却速率下,较低的终冷温度均具有更高的相变速率,冷却速率为50 ℃/s时,贝氏体相变速率最大。另外,终冷温度较高时,试验钢呈现出更好的塑性,强度随冷速变化较小;终冷温度较低时,试验钢呈现出更高的强度,但塑性较低,冷却速率对强度有较大的影响。  相似文献   

11.
Correlation of rolling conditions, microstructure, and low-temperature toughness of high-toughness X70 pipeline steels was investigated in this study. Twelve kinds of steel specimens were fabricated by vacuum-induction melting and hot rolling, and their microstructures were varied by rolling conditions. Charpy V-notch (CVN) impact test and drop-weight tear test (DWTT) were conducted on the rolled steel specimens in order to analyze low-temperature fracture properties. Charpy impact test results indicated that the energy transition temperature (ETT) was below −100 °C when the finish cooling temperature range was 350 °C to 500 °C, showing excellent low-temperature toughness. The ETT increased because of the formation of bainitic ferrite and martensite at low finish cooling temperatures and because of the increase in effective grain size due to the formation of coarse ferrites at high finish cooling temperatures. Most of the specimens also showed excellent DWTT properties as the percent shear area well exceeded 85 pct, irrespective of finish rolling temperatures or finish cooling temperatures, although a large amount of inverse fracture occurred at some finish cooling temperatures.  相似文献   

12.
The effects of start and finish cooling temperatures on microstructure and mechanical properties of low-carbon high-strength and low-yield ratio bainitic steels were investigated in this study. Four kinds of low-carbon high-strength and low-yield ratio bainitic steels were fabricated by varying the start and finish cooling temperatures and cooling rates, and their microstructure and mechanical properties such as tensile and Charpy impact properties were measured. In the steels cooled down from the high start cooling temperature above Ar1 [978 K (705 °C)], the volume fraction of acicular ferrite is lower than in the steels cooled down from the low start cooling temperature below Ar1 [978 K (705 °C)]. The finish cooling temperatures and cooling rates affect the formation of bainitic ferrite, granular bainite, and martensite–austenite (MA) constituents. According to the correlation between microstructure and mechanical properties, the tensile strength increases with increasing the volume fractions of bainitic ferrite and MA constituents, whereas the elongation decreases. The yield ratio decreases as the volume fraction of MA constituents increases. Charpy impact absorbed energy is proportional to the volume fraction of acicular ferrite, and is inversely proportional to the volume fraction of granular bainite.  相似文献   

13.
The correlation of the microstructure and mechanical properties of thermomechanically processed low-carbon steels containing B and Cu was investigated in this study. Eighteen kinds of steel specimens were fabricated by varying B and Cu contents and finish cooling temperatures (FCTs) after controlled rolling, and then tensile and Charpy impact tests were conducted on them. Continuous cooling transformation (CCT) diagrams of the B-free and B-added steel specimens under nondeformed and deformed conditions were constructed by a combination of deformation dilatometry and metallographic methods. The addition of a very small amount of B remarkably decreased the transformation start temperatures near a bainite start temperature (Bs) and thus expanded the formation region of low-temperature transformation phases such as degenerate upper bainite (DUB) and lower bainite (LB) to slower cooling rates. On the other hand, a deformation in the austenite region promoted the formation of quasipolygonal ferrite (QPF) and granular bainite (GB) with an increase in transformation start temperatures. The tensile test results indicated that tensile strength primarily increased with decreasing FCT, while the yield strength did not vary much, except in some specimens. The addition of B and Cu, however, increased the tensile and yield strengths simultaneously because of the significant microstructural change occasionally affected by the FCT. The Charpy impact test results indicated that the steel specimens predominantly composed of LB and lath martensite (LM) had lower upper-shelf energy (USE) than those consisting of GB or DUB, but had nearly equivalent or rather lower ductile-to-brittle transition temperature (DBTT) in spite of the increased strength. According to the electron backscatter diffraction (EBSD) analysis data, it was confirmed that LB and LM microstructures had a relatively smaller effective grain size than GB or DUB microstructures, which enhanced the tortuosity of cleavage crack propagation, thereby resulting in a decrease in DBTT.  相似文献   

14.
为了解奥氏体在连续冷却过程中的组织演变规律,更好地控制管线钢室温下的组织形态,对X70管线钢进行了静态及动态热模拟试验,绘制出了相应的连续冷却转变曲线(CCT曲线),观察其组织,分析变形和冷却速度等因素对管线钢组织的影响。同时对X70管线钢的入精轧温度、终轧温度等因素控轧控冷工艺进行模拟研究。认为提高变形后的冷却速度能获得针状铁素体组织;在同一冷却速度下,动态连续冷却转变得到的组织更细密;降低入精轧温度、终轧温度,增加冷却速度能细化组织。  相似文献   

15.
The effects of controlled rolling on transformation behavior of two powder forged (P/F) microalloyed vanadium steels and a cast microalloyed vanadium steel were investigated. Rolling was carried out in the austenitic range below the recrystallization temperature. Equiaxed grain structures were produced in specimens subjected to different reductions and different cooling rates. The ferrite grain size decreased with increasing deformation and cooling rate. Ferrite nucleated on second phase particles, deformation bands, and on elongated prior austenite grain boundaries; consequently a high fractional ferrite refinement was achieved. Deformation raised the ferrite transformation start temperature while the time to transformation from the roll finish temperature decreased. Cooling rates in the cast steel were higher than in P/F steels for all four cooling media used, and the transformation start temperatures of cast steels were lower than that of P/F steel. Intragranular ferrite nucleation, which played a vital role in grain refinement, increased with cooling rate. Fully bainitic microstructures were formed at higher cooling rates in the cast steel. In the P/F steels inclusions and incompletely closed pores served as sites for ferrite nucleation, often forming a ‘secondary’ ferrite. The rolling schedule reduced the size of large pores and particle surface inclusions and removed interconnected porosity in the P/F steels. Formerly Postgraduate Researcher in the Department of Metallurgy and Materials Science, UMIST/University of Manchester, United Kingdom  相似文献   

16.
 The effect of deformation in the nonrecrystallized region on the phase transformation for a low carbon and high Nb-containing steel with coarse austenite grain size was investigated by means of dilatometry measurement and microstructure observation. The results show that with the cooling rate increased, both the transformation start and finish temperatures measured by dilatometer are decreased, and the corresponding microstructure is changed from ferrite and pearlite to full granular bainite gradually. The dynamic CCT diagram is plotted according to the dilatometry measurements and microstructure observations. Dilatometry measurements also show that the transformation start and finish temperatures of the tested steel are raised with increasing strain, strain rate and deformation temperature, and the reasons for this are discussed.  相似文献   

17.
Continuous cooling transformation (CCT) diagrams for HSLA-80 and HSLA-100 steels pertaining to fusion welding with heat inputs of 10 to 40 kJ/cm, and peak temperatures of 1000 °C to 1400 °C have been developed. The corresponding nonlinear cooling profiles and related γ → α phase transformation start and finish temperatures for various peak temperature conditions have been taken into account. The martensite start (M s ) temperature for each of the grades and ambient temperature microstructures were considered for mapping the CCT diagrams. The austenite condition and cooling rate are found to influence the phase transformation temperatures, transformation kinetics, and morphology of the transformed products. In the fine-grain heat-affected zone (FGHAZ) of HSLA-80 steel, the transformation during cooling begins at temperatures of 550 °C to 560 °C, and in the HSLA-100 steel at 470 °C to 490 °C. In comparison, the transformation temperature is lower by 120 °C and 30 °C in the coarse-grain heat-affected zone (CGHAZ) of HSLA-80 steel and HSLA-100 steel, respectively. At these temperatures, acicular ferrite (AF) and lath martensite (LM) phases are formed. While the FGHAZ contains a greater proportion of acicular ferrite, the CGHAZ has a higher volume fraction of LM. Cooling profiles from the same peak temperature influence the transformation kinetics with slower cooling rates producing a higher volume fraction of acicular ferrite at the expense of LM. The CCT diagrams produced can predict the microstructure of the entire HAZ and have overcome the limitations of the conventional CCT diagrams, primarily with respect to the CGHAZ.  相似文献   

18.
The effects of technological parameters on microstructures and properties of low cost hot rolled dual-phase steel was researched by design different finish rolling temperature,mid cooling temperature between laminar cooling and UFC (ultra fast cooling) and stable UFC rate on the same gauge strips with the same chemistry composition during the manufacture process.It is the key for controlling coil temperature to control finish rolling temperature and mid cooling temperature between laminar cooling and UFC that based on stable UFC rate precondition.The lower finish rolling temperature,with mid cooling temperature between laminar cooling and UFC,the better to form martensite is.The foundation of developing the similar productions on the similar product line was supplied.It is good to technological advancement of developing high affixation value production as hot rolled DP steel,TRIP steel etc.in CSP line.  相似文献   

19.
利用Gleeble 3800热模拟试验机,结合膨胀仪研究了微量铜和砷对连续加热过程和冷却过程中Ti-IF钢相变动力学的影响;结合光学显微镜和扫描电子显微镜,模拟研究了微量铜和砷对不同热轧终轧温度条件下TiIF钢的铁素体晶粒尺寸的影响。结果表明:与几乎不含铜和砷的Ti-IF钢相比,铜、砷的质量分数为0.08%、0.04%的Ti-IF钢中的铜和砷显著提高连续加热过程中Ti-IF钢奥氏体相变的开始温度和连续冷却过程中铁素体相变的结束温度。这主要是由于砷是封闭铁基奥氏体区的元素。由于微量砷提高铁素体相变的结束温度,导致铁素体晶粒尺寸反常粗大。因此,对于残余砷含量较高的Ti-IF钢,应适当控制较高的热轧终轧温度,以避免形成粗大的铁素体组织。  相似文献   

20.
The production process of bars in Baosteel Nantong Co.Ltd.was adjusted by both decreasing heating temperature and adding controlling cooling procedure after finish rolling for upgrade of bars.A set of water cooling system was also installed behind the finishing mill.On-line tests were conducted,and then the microstructure and mechanical properties of the bars with HRB335 composition and φ22mm diameter were studied.The results showed that the microstructures of the bar cooled by water were ferrite and pearlite with grain sizes of 8.5 to 12 grades,which were finer than that of the bar without water cooling.While the thin outer layer microstructures of the bar cooled by water were mainly tempered sorbite with small amount of tempered troosite.The average yield strength R eL and tensile strength R m of the bars with water cooling increased 105MPa and 73MPa respectively compared with those of the bars without water cooling.The reason of this strengthening was attributed to the synthetic role of fine grains and phase transformation and precipitation mechanism.In addition,The ration of R m /R eL could be higher than 1.25,which is the request of earthquake-proof performance for HRB400E,only when the self-tempering temperatures of the bars were higher than 640℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号