首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
胡灵  张兴祥 《材料导报》1999,13(4):79-81
研究了不同添加剂对乙基纤维素富氧膜性能的影响。结果表明,低分子向列液晶正庚基联苯腈(7CB)、低分子胆甾液晶油烯基胆甾醇碳酸脂(COC)以及过渡金属化合物二亚水杨基邻笨二胺钴[Co(Salphen)]的添加,皆可以较大程度地改进乙基纤维素高分子富氧膜的性能。过渡金属盐醋酸钴[Co(Ac)_2]仅能提高乙基纤维素富氧膜对富氧空气的透过性,而杂环化合物吡啶(PY)只能提高乙基纤维素富氧膜的氧氮分离性而在某种程度上却降低了对富氧空气的透过性。  相似文献   

3.
以压缩空气为气源,采用恒压体积法详细地研究了乙基纤维素膜及一系列不同比例的乙基纤维素-二亚水杨基邻苯二胺钴共混膜的富氧性能。结果表明,乙基纤维素-二亚水杨基邻苯二胺钴共混膜的富氧性能皆比乙基纤维素膜的富氧性能高,并且在0.5MPa,60℃条件下,乙基纤维素-二亚水杨基邻苯二胺钴共混富氧膜(94∶6)的富氧空气的渗透速率P及一级富氧浓度分别可达2.34×106Barrer,40%。  相似文献   

4.
5.
聚丁二烯/液晶复合膜的富氧性能研究   总被引:1,自引:0,他引:1  
以聚丁二烯为基质,用端基为CH2=CH-的液晶化合物与其共混,交联成膜。用体积法测定膜的透气性能。研究结果发现,此类聚合物/液晶复合膜在50℃以上有明显的富氧性能,PO2值最高达180Barrer,氧、氮分离系数在3~5之间,最高达10左右。同时研究了膜的组成、温度等对膜透气性能的影响。  相似文献   

6.
NMMO法纤维素膜的结构与性能   总被引:11,自引:2,他引:9  
以纤维素为原料,NMMO为溶剂,用相转化法制备超滤膜,并研究了浆粕种类,铸膜液浓度,凝固浴浓度,温度对膜性能和结构的影响,同时对成膜机理也进行了探讨。  相似文献   

7.
乙基纤维素平板膜用于O2—N2气体分离性能和结构研究   总被引:2,自引:2,他引:0  
本文工作中选用乙基纤维素为膜材料,用无纺布做增强材质,考察了膜液浓度、添加剂种类及用量、蒸发时间、凝胶温度、热处理等因素对O_2-N_2分离性能的影响,并用扫描电镜观察所得膜的形态结构。  相似文献   

8.
以压缩空气为气源,采用恒压体积法详细地研究了乙基纤维膜及一系列不同比例的乙基纤维素-二亚水杨苛邻苯二胺钴共混膜的富氧性能。结果表明,乙基纤维素-二亚水杨基邻苯二胺钴共混的富氧性能皆比乙基纤维素膜的富氧性能高,并且在0.5MPa,60℃条件下,乙基纤维素-二亚水杨基邻苯二胺钴共混富氧膜的富氧空气的渗透速率P及一级富氧浓度分别可达2.34*10^6Barrer,40%。  相似文献   

9.
何本桥  廖博  黄勇 《功能材料》2007,38(11):1750-1752
通过旋涂成膜方法制备了聚芴(PF)/乙基氰乙基纤维素[(E-CE)C]共混物超薄膜(厚度约为50nm),用原子力显微镜(AFM)、透射电子显微镜(TEM)研究了共混物超薄膜形态结构,并用荧光光谱仪研究了共混物超薄膜中聚芴的光致发光性能.实验发现,超薄膜表面形态结构分布均一,相结构随着(E-CE)C含量增加有规律的变化,表现为PF逐渐被(E-CE)C均匀"分隔"开来.还发现该超薄膜在纳米尺度范围内发生垂面微相分离.同时,超薄膜中聚芴发射光谱随(E-CE)C含量增加发生蓝移,发射峰半高宽变窄.实验结果表明高速旋涂制得的超薄膜形态结构表现出显著的浓度依赖性,明显地影响PF发射光谱性质.  相似文献   

10.
采用溶液共混合液-固相转变法制备出共聚尼龙与乙基纤维素共混物(PA-170/EC)。以黏度法、折光指数法和热重分析法研究了PA-170与EC的相容性和热稳定性。用高效液相色谱法表征了PA-170/EC共混物的界面性能。实验结果表明PA-170和EC有较好的相容性,且EC可改善PA-170界面亲水性和吸附性;PA-170/EC对不离解的极性有机物的分离效率优于纯PA-170和EC。  相似文献   

11.
聚氨酯/液晶复合膜的抗凝血性能研究   总被引:2,自引:0,他引:2  
以聚醚型聚氨酯为基质材料,分别与向列型和胆甾型液晶化合物在适当溶剂中溶解共混后,利用溶剂发法在聚四氟乙烯板上浇铸成膜。研究了了复合膜中的液晶含量和成膜条件对复合膜表面结构形态的影响,同时详细研究了液晶含量对复合膜动态凝血性能、血小板粘附性能以及溶血性能的影响。研究结果表明,只有当复合膜中的液晶质量份数超过30%时,复合膜才表现出良好的抗凝血性能,且液晶含量的增加而复合膜的抗凝血性能有明显的改善,尤其是复合膜表面吸附的血小板数量随液晶含量的增加而明显减少。  相似文献   

12.
乙酰乙基纤维素的热致液晶性能及其与PA6原位复合的研究   总被引:2,自引:0,他引:2  
将乙基纤维素乙酰化制备乙酰乙基纤维素。用NMR,IR测定了AEC的乙酰取代度,用DSC,HSPLM研究了AEC的热致液晶性能,织构与A-DS的关系。在此基础上研究了PA6/AEC原位复合单丝的形态结构和力学性能,证明一定条件下AEC对PA6有明显增强作用,总取代度增大是主要作用机制。  相似文献   

13.
聚丁二烯/液晶复合膜的结构形态研究   总被引:3,自引:1,他引:2  
在聚丁二烯/液晶复合膜中,液晶的分布方式与液晶含量以及环境温度有关。当液晶含量超过30%时,50℃以下液晶呈连续的球状体,50℃以上液晶相呈连续的流动态。由于聚丁二烯分子与液晶分子的相互分散和交联的影响,使复合膜中的液晶相TKN比纯液晶的TKN降低了约30℃。当具有一定压力的气体通过复合膜后,复合膜的结构形态也发生了一定的变化。本研究利用DSC、SEM、TEM及OPM对复合膜的结构形态进行了表征,  相似文献   

14.
纤维素及其衍生物的胆甾型液晶结构   总被引:3,自引:0,他引:3  
综术了纤维毒素衍生物胆甾型溶致液晶结构的纤维素衍生物的复合物的结构研究的进展。纤维素衍生物能在多种溶剂中形成胆甾型溶致液晶,其液晶相具有多重织构特性,即它的多种织构的存在与外界条件如溶液的浓度、温度等有很大关系。在纤维素衍生物的胆甾型液晶溶液中还可观察到多种向错结构,含纤维素衍生物的高分子复合物的合成一方面使纤维素衍生物胆甾型液晶结构的研究进入了更微观的层次,另一方面其本身就具有潜在的应用前景。  相似文献   

15.
在外极管式电容耦合反应器中,进行了三甲基硅烷基丙炔与五甲基二硅烷基丙炔共聚物(DTMSP-PMDSP)膜的六氟丙烯(HFP)等离子体改性,改性膜的气体透过性研究表明,氧氮选择性显著提高。用XPS谱分析改性后的膜表面,其表面结构发生了显著的变化。  相似文献   

16.
根据非对称膜及其复合膜与气体渗透之间关系的数学模型,建立了通过测定气体渗透率确定膜结构参数的计算方法,并建立了相应的电算软件。可确定的膜结构参数为涂层厚度、致密层厚度、底膜和复合膜的表面平均孔径及表面孔隙率。并利用此方法确定了两种气体分离复合膜的结构参数。  相似文献   

17.
几种热致液晶性纤维素衍生物的制备及性能的研究   总被引:5,自引:0,他引:5  
以纤维素或羟乙基纤维素为原料,通过酯化反应制备了乙酰氧乙基纤维素(AEC)、苯甲酰氧乙基纤维素(B2EC)和苯甲酰氧纤维素(B2C)。采用FT-IR和元素分析表征了产物结构,通过用DSC、HSPLM和WAXD研究了产物的致热液晶织构和性能。B2C的热致液晶性最强,其各向同性液态转变温度(TLI=82℃)和转变热焓(ΔHLI=14.88J/g)是迄今报导的热致液晶纤维素衍生物中最高的。  相似文献   

18.
乙基氰乙基纤维素/甲基丙烯酸酯液晶溶液的研究EI   总被引:3,自引:1,他引:2  
乙基氰乙基纤维素/甲基丙烯酸酯在一定的浓度下可以形成溶致性液晶,从液晶相的双折射纹理结构和小角光散射的H_v散射花样可知这类液晶是胆甾型的。同时,在液晶相开始出现时及各向同性完全消失时的临界浓度C_1~*和C_2~*均随着甲基丙烯酸酯基的链的增长而减少。  相似文献   

19.
纤维素/羧甲基壳聚糖共混膜结构与抗菌性能   总被引:13,自引:0,他引:13  
对壳聚糖羰甲基化修饰合成羰甲基壳聚糖,于纤维素的新溶剂6%(质量)NaOH/4%(质量)尿素中制备出纤维/羧甲基壳聚糖共混膜。实验表明,共混膜中羰甲基壳聚糖含量低于50%(质量)时,二者具有良好的相容性,其干,湿态拉伸强度在羧甲基壳聚糖含量20%(质量)时达到最大,分别为94.5MPa和49.4MPa,比纤维素膜分别提高了13.2%和26%。抗菌性能测试显示,共混膜对金黄色葡萄球菌(St.aureus)的抗菌性大于纤维素膜,并且随羰甲基壳糖含量的增加而增强,羧甲基壳聚糖的取代度在0.4左右时,共混膜具有最佳的抗菌效果。  相似文献   

20.
通过静态力学、动态力学实验方法,研究了热致性液晶聚合物(LCP)的种类对环氧树脂共混物在不同温度下的拉伸强度和应力-应变曲线的影响,通过TEM观察了共混物的相形态结构。结果表明,反应型液晶聚合物(LCPU)比其它种类的液晶聚合物对环氧树脂的改性效果更好;在不同温度下,其拉伸强度和应力~应变行为均比其它材料优越;固化物的动态力学结果表明,反应型的液晶聚合物键入了固化网络,出现新的松弛。TEM结果表明,反应型的液晶聚合物在基体材料中形成大小在纳米数量级的液晶聚集微区,没有反应基团的液晶聚合物PHBHT在10%的加入量下,与环氧的共混物结构也有液晶聚集微区产生,但是聚集区大小在微米量级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号