首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou N  Wang J  Chen T  Yu Z  Li G 《Analytical chemistry》2006,78(14):5227-5230
Gold nanoparticle (Au-NP) seeds were adsorbed onto the surface of a self-assembled monolayer (SAM)-modified electrode. With the treatment of this modified electrode by Au-NPs growth solution containing different concentrations of H2O2 or cholesterol along with cholesterol oxidase (ChOx), the Au-NP seeds on the electrode surface were enlarged in varying degrees. As a result, the peak currents in corresponding cyclic voltammograms were inversely proportional to the concentration of H2O2 or cholesterol. ChOx was also further modified onto the surface of Au/SAM/Au-NP electrode to prepare Au/SAM/Au-NP/ChOx electrode. Using the enzyme-modified electrode to detect cholesterol, which also utilized the enlargement of the NPs, an extraordinary low detection limit of 5 x 10(-9) M was achieved and two linear dependence ranges of 7.5 x 10(-8)-1 x 10(-6) and 1 x 10(-6)-5 x 10(-5) M were obtained. Consequently, new kinds of H2O2 and cholesterol biosensors could be fabricated.  相似文献   

2.
This work is to develop an easy method of plasma treatment and graft polymerization to prepare thermosensitive gold nanoparticles. Gold nanoparticles (Nano-Au) were reduced by trisodium citrate combined with hydrogen tetrachloroaurate(III) tetrahydrate (chloroauric acid) and modified with 11-mercaptoundecanoic acid (MUA) by the self-assembly monolayers (SAM). The surface graft polymerization of N-isopropylacrylamide (NIPAAm) was carried out by two steps, using O2 plasma pretreatment of the surface on MUA SAM modified Nano-Au to form the peroxide groups on Nano-Au(MUA), and then subsequently using UV light to induce grafting with thermosensitive polymer. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to direct investigation of the particle size and morphology in situ. The diameters of the gold nanoparticles measured from the TEM images are in good agreement with data measured at room temperature which is about 15 nm. The thermosensitive gold nanoparticles were characterized by chemical structure of surface (ESCA) and Fourier-transform infrared spectroscopy (FTIR). ESCA result suggests that plasma treatments can be employed to generate peroxides on the Nano-Au(MUA) for the subsequent UV graft polymerization of PNIPAAm.  相似文献   

3.
The individual noble metal nanoparticles (NPs) are combined to form alloys with improved optical response, cost effectiveness and better stability. The selection of noble metal alloy NPs for their better use in plasmonic applications is being made on the bases of surface plasmon resonance peak position, its intensity and full width at half maxima (FWHM). Presently, the effect of metal composition (x), aspect ratio (R), size and metal type on the longitudinal plasmon resonance (LPR) of noble metal Ag–Au alloy nanorods (NRs) has been studied by applying modified Gans theory including finite wavelength effects and found that the LPR shifts towards the longer wavelength region with increase in aspect ratio and size of the NR. Moreover, a linear relationship which is in good agreement to the experimental results between the plasmon resonance and aspect ratio has been obtained. The aspect ratio and NR width-dependent absorption efficiency and FWHM have also been calculated. Further, a negligible effect of metal composition and its type is found on the LPR.  相似文献   

4.
Incorporating noble metal nanoparticles (NPs) and oxides has been proved to be an effective method to tune the optical properties of silica based materials. In this paper the optical and photocatalytic properties have been studied for ZnO/SiO2 modified with Au or NiO nanoparticles. Changes in the optical properties of semiconductor ZnO particles have been observed due to the deposition of coloured Au and NiO nanoparticles by reducing the band gap energy and thus extending light absorption to visible domain. The excellent surface characteristics of NiO/ZnO/SiO2 and Au/ZnO/SiO2 favour the adsorption behaviour of these materials and limit the recombination of electron–holes pairs. Crystal Violet degradation under VIS light proved to have higher efficiency in the presence of Au/ZnO/SiO2 (97%) than for NiO/ZnO/SiO2 (60%).  相似文献   

5.
Small Au nanoparticles (NPs) with mean diameter of 4.1 nm were highly deposited on TiO2 films via a simple electrostatic self-assembly method. The physically separated Au NPs, with a high surface density of 6.3 × 1011 NPs/cm2, were mainly distributed on the top layer of porous TiO2 films. The deposition of Au NPs induced a negative shift (~ 100 mV) of the apparent flat band potential of Au-TiO2 electrodes. The charge separation efficiency of the TiO2 electrode increased from 72.1% to 88.5% by dispersing Au NPs. Whatever redox species were present in the electrolyte, the Au-TiO2 electrode had higher photovoltage than the TiO2 electrode. The photovoltage was very sensitive to added redox species such as O2, O3, and methanol, and the effect of adsorbed redox species on electron accumulation was discussed. The electrochemical impedance spectroscopic measurements revealed that the charge transfer resistance (Rct) of Au-TiO2 films was reduced to 16% of bare TiO2 electrode, and the decreased Rct corresponded to the increased photocatalytic activity of Au-TiO2 films. The beneficial role of uniformly dispersed small Au NPs on the charge separation was discussed. By modifying TiO2 films with small Au NPs, the photocatalytic activity of TiO2 films for formaldehyde degradation increased about 2.5 times.  相似文献   

6.
By the self-assembly monolayer (SAM) organization, three new podands belonging to silylpropanethiols have been tested as to their ability to form nanolayers protecting the noble metal surface (gold or silver) and to form complexes with monovalent metal cations on the metal surfaces. The stable self-assembled chemisorbed layers, providing protection to metal surface against electrooxidation and capable of blocking propylene carbonate (PC) electroreduction and Li electrodeposition were produced. Reflection-absorption infrared spectroscopy (RAIRS) indicated cleavage of the S–H bond upon adsorption of species 1–3 with the formation of S–Ag bonds on the metal surface. By cyclic voltammetry, it was found that the primary adsorbate formed on a Au electrode at E ad (between −0.2 and −1.2 V vs. SCE) underwent reductive desorption at E < −1.3 V vs. SCE. The structures of 1–3 and their complexes with Na+ cations on the Ag surfaces were calculated and visualized by the AM1d semi-empirical method.  相似文献   

7.
Localized surface plasmon resonance (LSPR), light scattering, and lowering the series resistance of noble metal nanoparticles (NPs) provide positive effect on the performance of photovoltaic device. However, the exciton recombination on the noble metal NPs accompanying above influences will deteriorate the performance of device. In this report, surface‐modified Ag@oxide (TiO2 or SiO2) nanoprisms with 1–2 nm shell thickness are developed. The thin film composed of P3HT/Ag@oxides and P3HT:PCBM/Ag@oxides is investigated by absorption, photoluminescence (PL), and transient absorption spectroscopy. The results show a significant absorption, PL enhancement, and long‐lived photogenerated polaron in the P3HT/Ag@TiO2 film, indicating the increase of photogenerated exciton population by LSPR of Ag nanoprisms. In the case of P3HT/Ag nanoprisms, partial PL quench and relatively short‐lived photogenerated polaron are observed. That indicates that the oxides layer can effectively avoid the exciton recombination. When the Ag@oxide nanoprisms are introduced into the active layer of P3HT:PCBM photovoltaic devices, about 31% of power conversion efficiency enhancement is obtained relative to the reference cell. All these results indicate that Ag@oxides can enhance the performance of the cell, at the same time the ultrathin oxide shell prevents from the exciton recombination.  相似文献   

8.
The multifunctional thin films (BW12/Ag NPs)n (BW12 = BW12O40, NPs = nanoparticles) were prepared by layer-by-layer self-assembly method. The (BW12/PEI-Ag+)n (PEI = polyethylenimine) composite films were achieved through alternately depositing anionic BW12 and cationic PEI-Ag+ complex. The deposition process of (BW12/PEI-Ag+)10 multilayer is linear layer-by-layer self-assembly. Under UV irradiation, Ag ions in (BW12/PEI-Ag+)n multilayer films were reduced photochemically into Ag NPs and (BW12/Ag NPs)10 films were obtained. Through UV-vis measurements, the presence of surface plasma absorption peak at 445 nm demonstrated the formation of silver NPs. The electrochemical and antibacterial activities of (BW12/Ag NPs)n films were investigated. The electrochemical results indicate that the glassy carbon electrode modified with (BW12/Ag NP)n film exhibits the electroreduction toward O2. Moreover, the (BW12/Ag NP)10 multilayer films exhibit long-lasting antibacterial properties toward Escherichia coli (E. coli).  相似文献   

9.
SiO2 nanoparticles (NPs) surface modified with polyethyleneimine-oleic acid complex (PEI-OA) has successfully prepared in a simple manner as a stabilizer of metal (Ni) fine particles (FPs) as well as a component of Ni/SiO2 composite particles. Starting from SiO2 NPs which were collected through centrifugation of commercial SiO2 colloids, it was found that PEI-OA can effectively adsorbed on collected SiO2 NPs surface during their redispersion process in toluene with the assistance of ultrasonication. The aggregated particle size (Z-average size) in toluene could be successfully reduced to c.a. 100 nm under saturated adsorption of PEI-OA. It was also found that PEI-OA-modified SiO2 NPs can effectively attach to the Ni FPs by a simple mixing process in toluene. The FE-SEM observation confirmed the adsorption of the PEI-OA-modified SiO2 NPs on the Ni FPs without forming severe NP aggregates. Owing to the attachment of the PEI-OA-modified SiO2 NPs with surfaces that are compatible to toluene and α-terpineol, the suspension stability of the Ni/SiO2 composite particles in these solvents drastically improved. The result was confirmed by the effective reduction of the sedimentation velocity of diluted suspensions as well as by the reduction of the viscosity of dense suspensions.  相似文献   

10.
Organic-ligand-based solution processes of metal and transition metal oxide (TMO) nanoparticles (NPs) have been widely studied for the preparation of electrode materials with desired electrical and electrochemical properties for various energy devices. However, the ligands adsorbed on NPs have a significant effect on the intrinsic properties of materials, thus influencing the performance of bulk electrodes assembled by NPs for energy devices. To resolve these critical drawbacks, numerous approaches have focused on developing unique surface chemistry that can exchange bulky ligands with small ligands or remove bulky ligands from NPs after NP deposition. In particular, recent studies have reported that the ligand-exchange-induced layer-by-layer (LE-LbL) assembly of NPs enables controlled assembly of NPs with the desired interparticle distance, and interfaces, dramatically improving the electrical/electrochemical performance of electrodes. This emerging approach also demonstrates that efficient surface ligand engineering can exploit the unique electrochemical properties of individual NPs and maximize the electrochemical performance of the resultant NP-assembled electrodes through improved charge transfer efficiency. This report focuses on how LE-LbL assembly can be effectively applied to NP-based energy storage/conversion electrodes. First, the basic principles of the LE-LbL approach are introduced and then recent progress on NP-based energy electrodes prepared via the LE-LbL approach is reviewed.  相似文献   

11.
Niobate nanosheets prepared by exfoliation of layered hexaniobate K4Nb6O17 were sequentially decorated with two noble metal nanoparticles, gold and silver, through two-step photochemical reactions. First, cationic bis(ethylenediamine)gold(III) ions were electrostatically adsorbed on the anionic niobate nanosheets, and reduced to gold nanoparticles by UV excitation of the photocatalytically active niobate nanosheets. Then, the surface plasmon band of the photodeposited gold nanoparticles was excited with visible light, by which the silver cations introduced to the system together with citrate anions were reduced to silver nanoparticles. Spectroscopic and transmission electron microscopic observations indicated the formation of morphologically different silver nanoparticles, for example nanorods and core-shell particles.  相似文献   

12.
Galvanic replacement reactions (GRRs) on nanoparticles (NPs) are typically performed between two metals, i.e., a solid metal NP and a replacing salt solution of a more noble metal. The solution pH in GRRs is commonly considered an irrelevant parameter. Yet, the solution pH plays a major role in GRRs involving metal oxide NPs. Here, Cu2O nanocrystals (NCs) are studied as galvanic replacement (GR) precursors, undergoing replacement by gold and palladium, with the resulting nanostructures showing a strong dependence on the pH of the replacing metal salt solution. GRRs are reported for the first time on supported (chemically deposited) oxide NCs and the results are compared with those obtained with corresponding colloidal systems. Control of the pH enables production of different nanostructures, from metal‐decorated Cu2O NCs to uniformly coated Cu2O‐in‐metal (Cu2O@Me) core–shell nanoarchitectures. Improved metal nucleation efficiencies at low pHs are attributed to changes in the Cu2O surface charge resulting from protonation of the oxide surface. GR followed by etching of the Cu2O cores provides metal nanocages that collapse upon drying; the latter is prevented using a sol–gel silica overlayer stabilizing the metal nanocages. Metal‐replaced Cu2O NCs and their corresponding stabilized nanostructures may be useful as photocatalysts, electrocatalysts, and nanosensors.  相似文献   

13.
The fabrication of ideal Ag-modified magnetic nanoparticles (MNPs) as a recyclable antibacterial agent that possesses good dispersibility, strong magnetic responsiveness, and high bactericidal activity is still a challenge. In this study, we described a simple polyethyleneimine (PEI)-assisted connection method for fabricating high-performance Au@Ag-loaded MNPs (Fe3O4–Au@Ag). The Fe3O4 cores are first modified with uniform PEI shell (2 nm) through self-assembly under sonication. And then, the negatively charged Au@Ag NPs with a uniform size of 5 nm are adsorbed on the surface of the Fe3O4 cores through electrostatic interaction. The Au@Ag-loaded MNPs were obtained within 30 min, and they were highly uniform in size and shape with good dispersibility and strong magnetic responsivity. With the aid of the magnetic core, the residual nanoparticles can be recycled from solution through an external magnetic field. These dense Au@Ag NPs acted as antibacterial satellites in highly active areas for Ag ion releasing and bacteria contacting. The Fe3O4–Au@AgMNPs exhibited good antibacterial activity against both Gram-negative and Gram-positive bacteria. Moreover, the antibacterial activity of Fe3O4–Au@AgMNPs was significantly improved by streptomycin antibiotic modification. Enhancement of the bactericidal efficiency of Fe3O4–Au@Ag-streptomycin revealed the presence of a synergistic effect between the MNPs and the introduced antibiotic.  相似文献   

14.
Metal–organic frameworks (MOFs) have recently emerged as a type of uniformly and periodically atom‐distributed precursor and efficient self‐sacrificial template to fabricate hierarchical porous‐carbon‐related nanostructured functional materials. For the first time, a Cu‐based MOF, i.e., Cu‐NPMOF is used, whose linkers contain nitrogen and phosphorus heteroatoms, as a single precursor and template to prepare novel Cu3P nanoparticles (NPs) coated by a N,P‐codoped carbon shell that is extended to a hierarchical porous carbon matrix with identical uniform N and P doping (termed Cu3P@NPPC) as an electrocatalyst. Cu3P@NPPC demonstrates outstanding activity for both the hydrogen evolution and oxygen reduction reaction, representing the first example of a Cu3P‐based bifunctional catalyst for energy‐conversion reactions. The high performances are ascribed to the high specific surface area, the synergistic effects of the Cu3P NPs with intrinsic activity, the protection of the carbon shell, and the hierarchical porous carbon matrix doped by multiheteroatoms. This strategy of using a diverse MOF as a structural and compositional material to create a new multifunctional composite/hybrid may expand the opportunities to explore highly efficient and robust non‐noble‐metal catalysts for energy‐conversion reactions.  相似文献   

15.
A simple and quick microwave method to prepare high performance magnetite nanoparticles (Fe3O4 NPs) directly from Fe has been developed. The as-prepared Fe3O4 NPs product was fully characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The results show that the as-prepared Fe3O4 NPs are quite monodisperse with an average core size of 80 × 5 nm. The microwave synthesis technique can be easily modified to prepare Fe3O4/Ag NPs and these NPs possess good magnetic properties. The formation mechanisms of the NPs are also discussed. Our proposed synthesis procedure is quick and simple, and shows potential for large-scale production and applications for catalysis and biomedical/biological uses.  相似文献   

16.
We report here on the application of Surface Element Integration (SEI) to evaluate the potential energy of interactions between alkane-modified multiwalled carbon nanotubes (MWCNTs) and tetraoctylammonium bromide (TOAB) stabilised gold nanoparticles. The interacting objects are treated as cylinders and spheres, respectively, with corresponding alkyl chains extending perpendicularly from their surfaces. In such case the widely used Derjaguin approximation is invalid. Thus SEI was used to calculate the van der Waals, osmotic and elastic interactions. The results show that it is possible to control the self-assembly process of the gold nanoparticles at the surface of modified MWCNT in terms of size- and type-selectivity.  相似文献   

17.
Several noble metal nanoparticles doped sol-gel derived thin coloured films have been synthesized and characterized. These are pure (Ag, Au, Cu and Pt), mixed/alloy (Ag-Cu, Au-Cu, Au-Ag and Au-Pt) nanoparticles in SiO2, Au in mixed SiO2-TiO2 and SiO2-ZrO2, Au and Ag nanoparticles in inorganic-organic hybrid film matrices etc. This investigation leads to the development of tailor-made coloured coatings by tuning the surface plasmon resonance (SPR) band positions originating from the embedded nanometals by controlling mainly (i) refractive index of the film matrices and (ii) nanoalloy composition. In the later case a new layer-by-layer (two-layer) synthetic protocol has been developed to prepare binary nanoalloy particles with controlled atomic ratios.  相似文献   

18.
采用湿化学法制备了系列贵金属纳米颗粒(Ag、Au、Pt和Rh),并通过相转移过程实现了贵金属纳米颗粒的自组装,首先将水相中制备的贵金属溶胶与十二胺的乙醇溶液混合,然后将十二胺稳定的金属颗粒从极性的水相中转移到非极性的有机相中。这种方法不仅能实现金属纳米颗粒在基底上的自组装,而且有望应用于纳米颗粒自组装膜的制备中。  相似文献   

19.
Downsizing noble metal nanoparticles,such as Pt,is an essential goal for many catalytic reactions.A non-noble metal sacrificial approach was used to immobilize monodispersed Pt nanoparticles (NPs) with a mean size of 1.2 nm on reduced graphene oxide (RGO).ZnO co-precipitated with Pt NPs and subsequently sacrificed by acid etching impedes the diffusion of Pt atoms onto the primary Pt particles and also their aggregation during the reduction of precursors.The resulting ultrafine Pt nanoparticles exhibit high activity (a turnover frequency of 284 min-1 at 298 K) in the hydrolytic dehydrogenation of ammonia borane.The non-noble metal sacrificial approach is demonstrated as a general approach to synthesize well-dispersed noble metal NPs for catalysis.  相似文献   

20.
The magnetite (Fe3O4) nanoparticles were prepared by the co-precipitation of ferrous and ferric salts with NH4OH, and then modified with 3-aminopropyltriethoxysilane (APTES) by silanization reaction and subsequent reaction with glutaraldehyde (GA) to obtain functional groups on their surface. The influence of different terminated groups on protein binding was studied with bare and modified magnetite nanoparticles. Amine terminated magnetite nanoparticles were shown the highest binding ability for immobilization process compared to Fe3O4 NPs and GA bonded NPs. This binding ability was shown by using sodium dodecyl polyacrylamide gel electrophoresis technique (SDS-PAGE). Albumin attached magnetite nanoparticles were also examined by Scanning Electron Microscopy (SEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号