首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of composition on the tensile and creep strength of [001] oriented nickel-base superalloy single crystals at temperatures near 1000 °C was investigated. Cobalt, tantalum, and tungsten concentrations were varied according to a matrix of compositions based on the single crystal version of MAR-M247.* For alloys with the baseline refractory metal level of 3 wt pct Ta and 10 wt pct W, decreases in Co level from 10 to 0 wt pct resulted in increased tensile and creep strength. Substitution of 2 wt pct W for 3 wt pct Ta resulted in decreased creep life at high stresses, but improved life at low stresses. Substitution of Ni for Ta caused large reductions in tensile strength and creep resistance, and corresponding increases in ductility. For these alloys with low Ta plus W totals, strength was independent of Co level. The effects of composition on properties were related to the microstructural features of the alloys. In general, high creep strength was associated with high levels ofγ′ volume fraction,γ-γ′ lattice mismatch, and solid solution hardening.  相似文献   

2.
A dilute tungsten heavy alloy consisting of 50W-35Ni-15Fe (wt pct) was liquid phase sintered at 1500 ° for times ranging from 30 to 960 minutes. This alloy corresponds to a nominal solid content of 20 vol pct at the sintering temperature. Because of the excess liquid, the alloy den-sified easily and exhibited extensive liquid-solid separation due to the density difference between the phases. The solid content at the compact bottom ranged from 45 to 70 vol pct over position and time. The microstructure of the settled region was quantified for volume fraction of tung-sten, grain size, connectivity, and settled solid angle of repose. These results provide a basis for extending the microstructural parameters to possible microgravity conditions. The grain growth rate constant varies with the inverse 2/3 power of the volume fraction of liquid, possibly re-flecting combined coalescence and solution-reprecipitation processes. This volume-fraction ef-fect on the grain-growth-rate constant applies to several systems.  相似文献   

3.
Present work describes the flow behavior of tungsten heavy alloys with nominal compositions 90W-7Ni-3Fe, 93W-4.9Ni-2.1Fe, and 95W-3.5Ni-1.5Fe (wt pct) produced by CIPing and gelcasting routes. The overall microstructural features of gelcasting are finer than those of CIPing alloys. Both the grain size of W and corresponding contiguity values increase with increase in W content in the present alloys. The volume fraction of matrix phase decreases with increase in W content in both the alloys. The lattice parameter values of the matrix phase also increase with increase in W content. The yield strength (σYS) continuously increases with increase in W content in both the alloys. The σYS values of CIPing alloys are marginally higher than those of gelcasting at constant W. The ultimate tensile strength (σUTS) and elongation values are maximum at intermediate W content. Present alloys exhibit two slopes in true stress–true plastic strain curves in low and high strain regimes and follow a characteristic Ludwigson relation. The two slopes are associated with two deformation mechanisms that are occurring during tensile deformation. The overall nature of differential curves of all the alloys is different and these curves contain three distinctive stages of work hardening (I, II, and III). This suggests varying deformation mechanisms during tensile testing due to different volume fractions of constituent phases. The slip is the predominant deformation mechanism of the present alloys during tensile testing.  相似文献   

4.
Two nickel-base aligned eutectics, AG15 (Ni-8.1 wt pct Al-26.4 wt pct Mo) and AG34 (Ni-6.3 wt pct Al-31.2 wt pct Mo), have been tested in high cycle fatigue at room temperature. Experimental variables were test environment and post-solidification heat treatment. The fatigue lives of both alloys and the crack propagation resistance of AG15 improved substantially in tests performed in vacuumvs those performed in air. AG34 had a higher fatigue limit than AGI5; both alloys showed surface initiation and stage I crack propagation. Post-solidification heat treatment had a beneficial effect on the S-N lives of AG34 specimens. Fatigue resistance of both alloys is compared with that of other nickel or cobalt base eutectics strengthened with brittle fibers.  相似文献   

5.
The microstructure of liquid-phase sintered, tungsten-based heavy alloys comprises a continuous network of spheroidal tungsten single crystals embedded in a ductile, fcc matrix phase, and the integrity of the tungsten-matrix interphase boundaries established during processing is of major importance in determining the resultant mechanical properties. A serious potential source of embrittlement in these systems involves the precipitation of a brittle third phase along these boundaries. In the present work the techniques of selected area and convergent beam electron diffraction, energy dispersive X-ray microanalysis, and scanning Auger electron spectroscopy have been used to identify the embrittling interphase boundary precipitate formed in a commercial W-4.5 wt pct Ni-4.5 wt pct Fe alloy. The interphase boundary precipitation of an intermetallic phase in a W-7.2 wt pct Ni-2.4 wt pct Cu alloy under controlled conditions of heat treatment has also been confirmed. The precipitate phase observed in the W-Ni-Fe alloy in the as-sintered furnace-cooled condition has been found to be an eta carbide with a diamond cubic crystal structure (space group Fd3m,a 0 = 1.092 ± 0.005 nm) and a tentative composition of the form (Ni,Fe)6W6C, where the Ni:Fe atom ratio is approximately 2:3. Neither the carbide nor any evidence of an intermetallic phase was observed in the as-sintered, furnace-cooled W-Ni-Cu alloy, but a continuous interphase boundary film of intermetallic precipitate could be induced in specimens solution treated at 1350°C, water quenched, and aged isothermally in the temperature range 600 to 900°C. Selected area electron diffraction indicated that the phase was isomorphous with the intermetallic Ni4W of the binary Ni-W system. This paper is based on a presentation delivered at the symposium “Activated and Liquid Phase Sintering of Refractory Metals and Their Compounds” held at the annual meeting of the AIME in Atlanta, Georgia on March 9, 1983, under the sponsorship of the TMS Refractory Metals Committee of AIME. Formerly with Department of Mechanical and Industrial Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign  相似文献   

6.
Tensile strength of thermomechanically processed Cu-9Ni-6Sn alloys   总被引:2,自引:0,他引:2  
The tensile properties of Cu-9Ni-6Sn alloys with different swaging amounts of 64, 77, and 95 pct, either solutionized and aged (S/A) or directly aged (D/A), were examined as a function of aging time. It was found that the aging response of Cu-9Ni-6Sn alloys varied greatly depending on the prior solution heat treatment before aging and/or different swaging amounts. The swaged S/A Cu-9Ni-6Sn alloys showed a multistage increase in tensile strength with respect to aging time, probably due to the sequential occurrence of spinodal decomposition, formation of metastable γ· precipitates, and recrystallization. The effect of different swaging amounts, ranging from 64 to 95 pct, was minimal on the aging response of S/A specimens. The prior cold working, however, appeared to favor the spinodal strengthening, comparing unswaged and swaged S/A Cu-9Ni-6Sn alloys. In 95 pct swaged D/A Cu-9Ni-6Sn alloys, the level of hardening was much less sensitive to aging time. A complex interaction between the reduction in dislocation density, the formation of equilibrium precipitates, and the reduction of Sn content in the Sn-rich segregates during an aging process is believed to be responsible for such a lean sensitivity. The increases in tensile strength of 64 and 77 pct swaged D/A Cu-9Ni-6Sn alloys were found to be much steeper than that in the 95 pct counterparts in the early and intermediate stages of aging, which is believed to be related to the relative contribution from work hardening and precipitation hardening to the strength level of D/A specimens.  相似文献   

7.
Nitrogen solubility in liquid Fe, Fe-V, Fe-Cr-V, Fe-Ni-V and Fe-18 pct Cr-8 pet Ni-V alloys has been measured using the Sieverts’ method for vanadium contents up to 15 wt pct and over the temperature range from 1775 to 2040 K. Nitrogen solution obeyed Sieverts’ law for all alloys investigated. Nitride formation was observed in Fe-13 pet V, Fe-15 pet V and Fe-18 pet Cr-8 pet Ni-10 pet V alloys at lower temperatures. The nitrogen solubility increases with increasing vanadium content and for a given composition decreases with increasing temperature. In Fe-V alloys, the nitrogen solubility at 1 atm N2 pressure is 0.72 wt pet at 1863 K and 15 pct V. The heat and entropy of solution of nitrogen in Fe-V alloys were determined as functions of vanadium content. The first and second order interaction parameters were determined as functions of temperature as: $$e_N^V = \frac{{ - 463.6}}{T} + 0.148 and e_N^{VV} = \frac{{17.72}}{T} - 0.0069$$ The effects of alloying elements on the activity coefficient of nitrogen were measured in Fe-5 pet and 10 pet Cr-V, Fe-5 pet and 10 pet Ni-V and Fe-18 pet Cr-8 pct Ni-V alloys. In Fe-18 pet Cr-8 pet Ni-10 pet V, the nitrogen solubility at 1 atm N2 pressure is 0.97 wt pet at 1873 K. The second order cross interaction parameters, e N Cr,V and e N Ni,V , were determined at 1873 K as 0.00129 and ? 0.00038 respectively.  相似文献   

8.
Martensitic transformations induced by plastic deformation are studied comparatively in various alloys of three types: Fe-30 pct Ni, Fe-20 pct Ni-7 pct Cr, and Fe-16 pet Cr-13 pct Ni, with carbon content up to 0.3 pct. For all these alloys the tensile properties vary rapidly with temperature, but there are large differences in the value of the temperature rangeM s toM d, which strongly increases with substitution of chromium for nickel or with carbon addition. Using the node method, it is found that the intrinsic stacking fault energy in the austenite drastically increases with temperature in all the chromium-bearing alloys investigated. This variation is consistent with the observed influence of temperature on the appearance of twinning or ε martensite during plastic deformation. Very different α’ martensite morphologies can result from spontaneous and plastic deformation induced transformations, especially in Fe-20 pct Ni-7 pct Cr-type alloys where platelike and lath martensites are respectively observed. As in the case of ε martensite, the nucleation process is analyzed as a deformation mode of the material, using a dislocation model. It is then possible to account for the morphology of plastic deformation induced α’ martensite in both Fe-20 pct Ni-7 pct Cr and Fe-16 pct Cr-13 pct Ni types alloys and for the largeM s toM d range in these alloys. This paper is based upon a thesis submitted by F. LECROISEY in partial fulfillment of the degree of Doctor of Philosophy at the University of Nancy.  相似文献   

9.
Several ingots (0.0254 m in diam × 0.10 m long) of nickel-30 wt pct copper, nickel-10 wt pct cobalt and iron-25 wt pct nickel were solidified with various undercoolings up to about 200 K, prior to nucleation of the solid. The materials were mechanically tested in the ascast condition. In nickel-30 wt pct copper and iron-25 wt pct nickel alloys the 0.2 pct offset yield strength, ductility and fatigue strength increased with undercooling. A linear relationship was established between 0.2 pct offset yield strength and the square root of secondary dendrite arm spacing in dendritic alloys (undercooled less than 170 K) or that of grain diameter in nondendritic alloys (undercooled more than 170 K). In iron-25 wt pct nickel limited testing indicated improvements in Charpy V-notch impact strength and in fracture toughness with undercooling. No improvement of tensile properties with undercooling was observed in nickel-10 wt pct cobalt, an alloy which solidified normally with very low microsegregation.  相似文献   

10.
The mechanical alloying process has successfully combined oxide-dispersion-strengthening with conventional gamma prime precipitation hardening for advanced gas turbine materials. INCONEL* alloy MA 6000, a mechanically alloyed Ni-base superalloy, has the highest temperature capability among commercially available superalloys. Further improvement of the intermediate temperature strength has been pursued by both increasing the gamma prime content up to 80 vol pct and controlling the additions of refractory metals. The microstructural development of these new experimental alloys is reported in this paper, especially for an alloy, nominally identified as Alloy 51, having the composition Ni-9.3 pct Cr-8.5 pct Al-6.6 pct W-3.4 pct Mo-0.15 pct Zr-0.01 pct B-l.l pct Y2O3 (wt pct). Both the primary and the secondary recrystallized microstructures of the alloy were characterized in terms of gamma grain structure, gamma prime precipitate morphology, orientation relationships, dispersoids, carbide/nitride particles, and chemical composition of intermetallic phases. The microstructural stability of the alloy under stress rupture conditions was also investigated in terms of coarsening/coalescence of gamma prime precipitates. Correlation of the microstructural information with the high temperature properties of the alloy is also briefly discussed. Formerly with the INCO R&D Center, Suffern, NY.  相似文献   

11.
Magnetic properties of maraging steels have been investigated as a function of nickel concentration. The alloys nickel content varied from 12 to 24 wt pct, while other alloying constituents were kept at a level maintained in the 18Ni-2400 MPA-grade maraging steel. The magnetic properties were determined following aging for 1 hour in the temperature range of 450 °C to 750 °C. In every alloy investigated, the coercive field increased with aging temper-ature, reaching a maximum around 670 °C ± 30 °C. The saturation magnetization values were lowest around temperatures where maximum coercive field was observed. The coercive field increased from ∼55 to ∼ 175 Oe (∼4380 to ∼ 13,900 amp/meter) and the corresponding sat-uration magnetization decreased from ∼18,500 to ∼ 4000 G (∼1.85 to ∼0.4 T) in the alloys containing 12 and 24 wt pct Ni, respectively. The reverted austenite increased from 25 vol pct at 12 wt pct Ni to 100 vol pct at 24 wt pct Ni. The hardness and Charpy impact strength of the alloys have also been determined. An attempt has been made to correlate magnetic properties with different phase transformations occurring in maraging steels.  相似文献   

12.
The synthesis of two Cr-free nickel-based alloys designated as 1S with 6.5 pct Mn and 2H without Mn of compositions varying between 40 to 43.5Ni, 20Mo, 22 to 25Fe, 10Cu, 6.5 to 0Mn, 1Ti, and 0.5Al (wt pct) as filler materials for TIG welding application was performed. New filler materials were developed to reduce carcinogenic hexavalent chromium (Cr6+) fumes generated during the welding of 300 series austenitic stainless steel. The Cr-free nickel alloys were characterized for microstructure and mechanical properties. The developed alloys showed good microstructure stability in as-cast and solution-treated conditions. A material properties simulation software JMatPro predicted that 2H alloy has 2 wt pct more γ (solid solution) phase than in 1S but has 2.2 wt pct less γ′ (strengthening precipitates) phase than in 1S alloy. The tensile strength of 1S alloy was about 2.2 pct more than 2H. The solution treatment of both alloys decreased the hardness, tensile and yield strengths by about 21 pct but ductility improved by about 17 pct. Fracture studies of both alloys showed the ductile mode of failure.  相似文献   

13.
In the current study, the two alloys, Ni-20 at. pct W and Ni-35 at. pct W, were mechanically alloyed and subsequently heat treated to evaluate their structural variations using X-ray diffraction, scanning, and transmission electron microscopy, and differential thermal analysis. In addition, the effect of Fe contamination on the progress of mechanical alloying was investigated. The results showed that the Ni-20 at. pct W contained only Ni(W) solid solution even after prolonged milling times, while the Ni-35 at. pct W was amorphized after 40 hours of milling. The composition of the amorphized alloy was estimated to be Ni-31 at. pct W. Furthermore, it was demonstrated that the nanocrystalline NiW intermetallic compound was stable at temperatures greater than 1303 K (1030 °C) and did not completely vanish upon peritectoid reaction. Consequently, an exceptional grain coarsening resistance was observed at high temperatures near the melting points. The mechanisms involved in this outstanding thermal stability were also probed.  相似文献   

14.
In this work four different microstructures were obtained by unidirectional solidification of Fe-Cr-C eutectic alloys. Conditions for zone coupled growth were determined in alloys containing approximately 30 wt pct chromium. Furthermore, mechanical testing indicated that the maximum strength was exhibited by Fe-30Cr-C alloys with cerium or titanium additions. These alloys had the largest volume fraction of eutectic fibers and their ultimate tensile strength was of the order of 3250 MPa. Correlations between the rate of crystal growth(u) and fiber spacing (λ) or tensile strength(Rm) were found and an expression of the typeRm =-b2 was obtained whereb 2 varied between 0.283 and 0.685. Finally, manganese or chromium (35 wt pct Cr) additions did not lead to appreciable improvements in composite strength for this alloy system.  相似文献   

15.
An austenitic Ni-30 wt pct Fe alloy, with a stacking-fault energy and deformation characteristics similar to those of austenitic low-carbon steel at elevated temperatures, has been used to examine the defect substructure within austenite deformed by single-pass strip rolling and to identify those features most likely to provide sites for intragranular nucleation of ultrafine ferrite in steels. Samples of this alloy and a 0.095 wt pct C-1.58Mn-0.22Si-0.27Mo steel have been hot rolled and cooled under similar conditions, and the resulting microstructures were compared using transmission electron microscopy (TEM), electron diffraction, and X-ray diffraction. Following a single rolling pass of ∼40 pct reduction of a 2mm strip at 800 °C, three microstructural zones were identified throughout its thickness. The surface zone (of 0.1 to 0.4 mm in depth) within the steel comprised a uniform microstructure of ultrafine ferrite, while the equivalent zone of a Ni-30Fe alloy contained a network of dislocation cells, with an average diameter of 0.5 to 1.0 μm. The scale and distribution and, thus, nucleation density of the ferrite grains formed in the steel were consistent with the formation of individual ferrite nuclei on cell boundaries within the austenite. In the transition zone, 0.3 to 0.5 mm below the surface of the steel strip, discrete polygonal ferrite grains were observed to form in parallel, and closely spaced “rafts” traversing individual grains of austenite. Based on observations of the equivalent zone of the rolled Ni-30Fe alloy, the ferrite distribution could be correlated with planar defects in the form of intragranular microshear bands formed within the deformed austenite during rolling. Within the central zone of the steel strip, a bainitic microstructure, typical of that observed after conventional hot rolling of this steel, was observed following air cooling. In this region of the rolled Ni-30Fe alloy, a network of microbands was observed, typical of material deformed under plane-strain conditions.  相似文献   

16.
The variation of the kinetics of the martensite transformation with carbon content and martensite habit plane has been investigated in several Fe−Ni based alloys. Transformation in an Fe-25 wt pct Ni-0.02 wt pct C alloy exhibits predominantly athermal features, but some apparently isothermal transformation also occurs. In a decarburized alloy, on the other hand, the observed kinetic features, such as the dependence ofM s on cooling rate, were characteristic of an isothermal transformation. In contrast, Fe-29.6 wt pct Ni-10.7 wt pct Co alloys with carbon contents of 0.009 wt pct C and 0.003 wt pct C transform by burst kinetics to {259}γ plate. At both these carbon levels, theM b temperatures of the Fe−Ni−Co alloys are independent of cooling rate. It is proposed that the change in kinetic behavior of the Fe-25 pct Ni alloy with the different carbon contents is due to the occurrence of dynamic thermal stabilization in the higher carbon alloy. Dynamic thermal stabilization is relatively unimportant in the Fe−Ni−Co alloys which transform by burst kinetics to {259}γ plate martensite. P. J. FISHER, formerly with the University of New South Wales D. J. H. CORDEROY, formerly with the University of New South Wales  相似文献   

17.
The creep and fracture properties of high-purity Ni-20 pct Cr and Ni-20 pct Cr-0.11 pct Zr alloys are compared at 1073 K in vacuum. The Ni-20 pct Cr alloy cavitates at the grain boundaries and fractures intergranularly after strains of typically 20 pct. The observed cavity growth rates are in keeping with those predicted. Alloying with zirconium substantially increases the creep strength and ductility. Creep rupture associated with dynamic recrystallization occurs, and voids are observed only in heavily necked parts of the samples. In addition to Ni5Zr and ZrO2 inclusions, a Zr4C2S2 carbo-sulfide was identified. Thus, the sulfur-gettering effect of zirconium even at very low residual sulfur levels (20 wt ppm) was confirmed. The zirconium-induced increase in the creep strength is discussed, and the inhibition of creep cavitation by zirconium is examined within the framework of thermal cavity nucleation. Lowering of the grain boundary diffusivity and the grain boundary free energy as well as dynamic recrystallization are likely to reduce cavity nucleation and growth rates in Ni-Cr-Zr and will thus increase its ductility. Finally, the results are used to illustrate the critical importance of minor alloying additions in constructing and using fracture mechanism maps.  相似文献   

18.
Four common AlSiMg foundry alloys have been solution heat treated at 813 K, quenched, and immediately aged at 423 K for up to 240 minutes. The mechanical properties are found to be related to the amount of Mg and Si in the alloys. A high strength is obtained after only 60 minutes of solution heat treatment, indicating that the solid solution is rapidly saturated on Mg and Si. The ductility is very much related to the amount of silicon present and the refinement of the silicon crystals within the eutectic areas, since silicon crystals are observed to crack when load is applied. Thus, a well-modified structure is the best way to obtain high ductility. Reduced quencing rates after solution heat treatment lead to a lower strength, since a lower number of hardening β′-Mg2Si precipitates are formed. The ductility of alloys with 0.6 wt pct Mg is increased with a reduced quenching rate. A more ductile matrix corresponding to the lower amount of hardening precipitates can explain this. Alloys with 0.2 wt pct Mg remain relatively unchanged. A hypothesis that may explain this phenomenon is the precipitation of brittle silicon or formation of coarse Mg2Si within the dendrites.  相似文献   

19.
Both Ni-36 wt pct Sb and Ni-52.8 wt pct Sb eutectic alloys were highly undercooled and rapidly solidified with the glass-fluxing method and drop-tube technique. Bulk samples of Ni-36 pct Sb and Ni-52.8 pct Sb eutectic alloys were undercooled by up to 225 K (0.16 T E ) and 218 K (0.16 T E ), respectively, with the glass-fluxing method. A transition from lamellar eutectic to anomalous eutectic was revealed beyond a critical undercooling ΔT 1*, which was complete at an undercooling of ΔT 2*. For Ni-36 pct Sb, ΔT 1*≈60 K and ΔT 2*≈218 K; for Ni-52.8 pct Sb, ΔT 1*≈40 K and ΔT 2*≈139 K. Under a drop-tube containerless solidification condition, the eutectic microstructures of these two eutectic alloys also exhibit such a “lamellar eutectic-anomalous eutectic” morphology transition. Meanwhile, a kind of spherical anomalous eutectic grain was found in a Ni-36 pct Sb eutectic alloy processed by the drop-tube technique, which was ascribed to the good spatial symmetry of the temperature field and concentration field caused by a reduced gravity condition during free fall. During the rapid solidification of a Ni-52.8 pct Sb eutectic alloy, surface nucleation dominates the nucleation event, even when the undercooling is relatively large. Theoretical calculations on the basis of the current eutectic growth and dendritic growth models reveal that γ-Ni5Sb2 dendritic growth displaces eutectic growth at large undercoolings in these two eutectic alloys. The tendency of independent nucleation of the two eutectic phases and their cooperative dendrite growth are responsible for the lamellar eutectic-anomalous eutectic microstructural transition.  相似文献   

20.
Differential scanning calorimetry (DSC) is used in the present study to determine the onset temperature of phase transformation and the enthalpy of fusion of various solder alloys. The solders studied are Sn-Pb, Sn-Bi, Ag-Sn, In-Ag, and Sn-Pb-Bi alloys. Very notable undercooling, such as 35 °C, is observed in the solidification process; however, a superheating effect is not as significant in the heating process. Besides the direct measurements of reaction temperature and heat of fusion, the fraction solid vs temperature has also been determined using a DSC coupled with a mathematical-model method. The heating and cooling curves of the solders are first determined using DSC. By mathematically modeling the heat transfer of the DSC cells, the heat evolution and absorption can be calculated, and then the melting and solidification curves of the solder alloys are determined. The three ternary alloys, Sn-35 wt pct Pb-10 wt pct Bi, Sn-45 wt pct Pb-10 wt pct Bi, and Sn-55 wt pct Pb-10 wt pct Bi, displayed similar DSC cooling curves, which had three reaction peaks. However, the solid fractions of the three alloys at the same temperature in the semisolid state, which had been determined quantitatively using the DSC coupled with a mathematical method, were different, and their primary solidification phases were also different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号