首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Refrigeration with ammonia   总被引:5,自引:0,他引:5  
Ammonia is widely used as a refrigerant in industrial systems for food refrigeration, distribution warehousing and process cooling. It has more recently been proposed for use in applications such as water chilling for air-conditioning systems but has not yet received widespread acceptance in this field. This review paper assesses the reasons why ammonia is so popular in industrial systems, the reasons why it is deemed less suitable for other applications and the possible benefits at local, national and international levels that might be gained by more general acceptance of ammonia as a refrigerant. The paper also considers other possible applications which might benefit from the use of ammonia as refrigerant.  相似文献   

2.
The pressure, flow and temperature transients which occur in simple refrigeration systems (incorporating both dry expansion and flooded evaporators), when subjected to disturbances such as control and load inputs and when defrosting, are described. The effects of oil in such systems are also considered. It is concluded that such transients have a significant influence on system reliability and that system design still contains a significant element of art as well as technology.  相似文献   

3.
Current and future prospects of enhanced heat transfer in ammonia systems   总被引:2,自引:0,他引:2  
In the last decade a moderate headway has been made in the application of enhanced surface heat exchangers in ammonia refrigeration systems. This has been a result of the persistent issue of ozone and global warming which has resulted in keen interest in natural refrigerants such as ammonia that has played a prominent role in the refrigeration industry for years, particularly in the field of food, beverage and marine. The only drawback with ammonia is the toxicity; hence, if smaller heat exchangers could be introduced in order to reduce ammonia charge, this negative aspect about ammonia can be addressed to a great extent. In order to achieve this goal, novel and compact heat exchangers with enhanced surfaces have to be introduced. This paper presents an over view of the status of ammonia as a refrigerant and discusses the present and the future trends in the development of compact heat exchangers for use in ammonia refrigeration.  相似文献   

4.
Discussion of the feasibility of the Einstein refrigeration cycle   总被引:4,自引:0,他引:4  
A careful modelling of the thermodynamic properties of the water–ammonia–butane system, the working fluid mixture used in the Einstein cycle, with the Patel–Teja cubic equation of state is performed. Numerical simulation is used to investigate the feasibility limits of this refrigeration cycle. Two modified configurations of the cycle are considered. A conflict between the evaporator and the condenser/absorber operating conditions is noted. The condenser/absorber operation needs a higher system pressure, which limits the refrigeration temperature in the case of air-cooling. On the other hand, the condensation of ammonia and the presence of a small quantity of water in the evaporator limit also the refrigeration temperature. In the case of a water-cooled machine, with a condenser/absorber temperature of 30 °C, the cycle COP reaches 0.19 which is still low.  相似文献   

5.
Ammonia in low capacity refrigeration and heat pump systems   总被引:2,自引:0,他引:2  
Ammonia has been used as refrigerant in large vapour compression systems continuously since the beginning of the era of refrigeration. In small systems, it has hardly been used at all since the introduction of the halogenated hydrocarbons around 1930. Lately, with the search for alternatives with less influence on global warming, the use of ammonia in small systems has come into focus again.In the present paper, the work done at the Royal Institute of Technology (KTH) with the aim of developing a prototype of a domestic water to water heat pump with a heating capacity of 9 kW is presented. It has been shown that such a system can be designed to operate with about 100 g of ammonia.Crucial problems in the development of the direct expansion system were to arrange for oil return, and to achieve good heat transfer in the evaporator. These problems were solved by use of an oil which is soluble in ammonia.The main obstacle for introducing this technology commercially is the limited supply of components. Particularly, there are no hermetic or semi-hermetic compressors for ammonia available in this size range.  相似文献   

6.
Worldwide reactions to the debates on global warming and ozone depletion have led to social responses and legislative measures which have serious implications for refrigeration and associated industries. This paper discusses the problems to be faced, and the ways in which the industry can contribute to meeting the wider global objectives. The discussion considers the choice and availability of working fluids, the increased complexity of using fluid mixtures, and the risk of losing the simplicity in design and construction which was possible with CFC single fluids. Education and training are presented as issues because of the changes in technology.  相似文献   

7.
Flow boiling of ammonia and hydrocarbons: A state-of-the-art review   总被引:1,自引:1,他引:0  
A comprehensive review of flow boiling heat transfer, two-phase pressure drops and flow patterns of ammonia and hydrocarbons applied in air-conditioning, refrigeration and heat pump systems is presented in this paper. First, experimental studies of flow boiling of ammonia and hydrocarbons are addressed. Then, the prediction methods for flow boiling heat transfer, two-phase pressure drops and flow patterns are described. Next, comparisons of four flow boiling heat transfer and four two-phase pressure drop methods to the experimental data in smooth tubes derived from the available studies are presented. In addition, comparison of flow patterns to a flow map is presented. Based on the comparisons and analysis, recommendations on these methods are given. Furthermore, research needs on flow boiling and two-phase flow of ammonia and hydrocarbons have been identified. It is suggested that more experimental data be obtained through well conducted experiments and new prediction methods or modified ones based on the available methods be made for ammonia and hydrocarbons. In addition, the effect of oil on ammonia and hydrocarbon flow boiling and two-phase flow should be studied in order to have conclusive evidence of its effect.  相似文献   

8.
分析了制冷设备中Q345R制氨贮存容器须焊后热处理的原因,并提出了防止液氨压力容器应力腐蚀开裂的措施。  相似文献   

9.
Simulation has been widely used for performance prediction and optimum design of refrigeration systems. A brief review on history of simulation for vapour-compression refrigeration systems is done. The models for evaporator, condenser, compressor, capillary tube and envelop structure are summarized. Some developing simulation techniques, including implicit regression and explicit calculation method for refrigerant thermodynamic properties, model-based intelligent simulation methodology and graph-theory based simulation method, are presented. Prospective methods for future simulation of refrigeration systems, such as noise-field simulation, simulation with knowledge engineering methodology and calculation methods for nanofluid properties, are introduced briefly.  相似文献   

10.
A new combined power and refrigeration cycle is proposed for the cogeneration, which combines the Rankine cycle and the ejector refrigeration cycle by adding an extraction turbine between heat recovery vapor generator (HRVG) and ejector. This combined cycle could produce both power output and refrigeration output simultaneously, and could be driven by the flue gas from gas turbine or engine, solar energy, geothermal energy and industrial waste heats. Parametric analysis and exergy analysis are conducted to examine the effects of thermodynamic parameters on the performance and exergy destruction in each component for the combined cycle. The results show that the condenser temperature, the evaporator temperature, the turbine inlet pressure, the turbine extraction pressure and extraction ratio have significant effects on the turbine power output, refrigeration output, exergy efficiency and exergy destruction in each component in the combined cycle. It is also shown that the biggest exergy destruction occurs in the heat recovery vapor generator, followed by the ejector and turbine.  相似文献   

11.
Refrigeration cogeneration systems which generate power alongside with cooling improve energy utilization significantly, because such systems offer a more reasonable arrangement of energy and exergy “flows” within the system, which results in lower fuel consumption as compared to the separate generation of power and cooling or heating. This paper proposes several novel systems of that type, based on ammonia–water working fluid. Importantly, general principles for integration of refrigeration and power systems to produce better energy and exergy efficiencies are summarized, based primarily on the reduction of exergy destruction. The proposed plants analyzed here operate in a fully-integrated combined cycle mode with ammonia–water Rankine cycle(s) and an ammonia refrigeration cycle, interconnected by absorption, separation and heat transfer processes. It was found that the cogeneration systems have good performance, with energy and exergy efficiencies of 28% and 55–60%, respectively, for the base-case studied (at maximum heat input temperature of 450 °C). That efficiency is, by itself, excellent for cogeneration cycles using heat sources at these temperatures, with the exergy efficiency comparable to that of nuclear power plants. When using exhaust heat from topping gas turbine power plants, the total plant energy efficiency can rise to the remarkable value of about 57%. The hardware proposed for use is conventional and commercially available; no hardware additional to that needed in conventional power and absorption cycles is needed.  相似文献   

12.
The active thermal potentiostatting system proposed by Martinovskii and Tsirlin is directly generalized to a more practical case, in which one intermediate chamber, besides a thermal potentiostatting chamber, and two irreversible refrigeration cycles are included and the influence of the thermal resistance between the working fluid and the reservoirs, the heat leakages from the environment to the intermediate chamber and from the intermediate chamber to the potentiostatting chamber are taken into account. Expressions for the main parameters of the system are derived. By using the optimal control theory, the minimum total power input of the system with non-zero cooling rates is calculated and the temperatures of the working fluid in the isothermal processes of the refrigeration cycles are optimized. The optimal allocation of the heat-transfer areas of the heat-exchangers in the refrigeration cycles is discussed in detail. The results obtained here are more general and useful than the relevant results in literature and can provide some valuable guidance for the optimal design and operation of real active thermal potentiostatting systems.  相似文献   

13.
In ammonia–water absorption refrigeration systems a purification process to reduce the water content in the vapour leaving the generator is required. During this process the water content in the vapour must be reduced to a minimum, otherwise it tends to accumulate in the evaporator and strongly deteriorates the efficiency of the system. The vapour purification can be carried out by partial condensation, by establishing a liquid–vapour counter flow or by combining both methods. In systems with partial condensation, the distillation column can be composed of one or more rectifiers using different cooling mediums, and the rectifying and stripping sections. In complete condensation systems only the rectifying and stripping sections can be used. Therefore different distillation column arrangements should be considered. This paper presents a study of several distillation column configurations for single stage ammonia–water absorption refrigeration systems with partial and complete condensation. In order to evaluate and compare the different configurations, a parameter that indicates the ratio of the ammonia vapour concentration increase in each part of the column to the total ammonia purification has been defined. The analysis has been based on the system COP. Finally the efficiency in each part of the column has been calculated to estimate its design requirements.  相似文献   

14.
Refrigerant migration during start-up and shut-down cycles can affect energy losses. Two reciprocating compressor refrigeration systems were studied: (1) a conventional cycle with refrigerant migration through the capillary tube after compressor shut-down and (2) a system in which a magnetic cut-off valve was closed on compressor shut-down. It was found that by preventing the refrigerant from migrating during shut-down, energy losses during start-up could be reduced, resulting in a 4% decrease in motor power input at this time. A computer program has been developed to calculate energy losses due to refrigerant migration.  相似文献   

15.
Thermodynamic generalizations based on reduced pressure proposed in the 1960s are reviewed and updated to reflect the current state of the art. The application of the method is illustrated by analytical and numerical examples and an assessment made of its value in heat exchanger design practice with special emphasis on two-phase forced convection refrigeration cycle applications. It is shown that this thermodynamic approach provides the heat exchanger designer, and to some extent the system engineer with an additional tool which is simple, effective and above all more reliable, particularly in evaporator and condenser design practice, than current conventional semi-empirical correlations.  相似文献   

16.
Thermodynamics of magnetic refrigeration   总被引:2,自引:1,他引:1  
A comprehensive treatment of the thermodynamics of cyclic magnetic refrigeration processes is presented. It starts with a review of the work, heat and internal energy of a magnetized specimen in a magnetic field, and a list of the thermodynamic potentials is given. These are based on the very recent discovery of an alternative Kelvin force. It is shown that this force is compatible with the internal energy proposed by Landau and Lifshitz. New formulas for the specific enthalpies are presented. Cyclic processes are discussed in detail, e.g. the Brayton, Ericsson and Carnot cycles. Magnetic refrigeration and magnetic heat pump cycles are preferably designed by applying the cascade or/and regeneration principle. Cascade systems allow wider temperature ranges to be obtained. The main objective of this article is to yield a theoretical basis for an optimal design of new magnetic refrigeration and heat pump devices.  相似文献   

17.
陈启星  罗启宇 《制冷》2001,20(4):58-61
提出了一种压缩机的压力平衡式密封结构,实现了对电动机定子的无压差静密封,可靠地保证了定子防止氨腐蚀,使得制造氨制冷封闭式压缩机成为可能,为研制制冷设备提供了新思路。  相似文献   

18.
Results of a room temperature magnetic refrigeration test bed and an analysis using a computational model are presented. A detailed demonstration of the four sequential processes in the transient magnetocaloric regeneration process of a magnetic material is presented. The temperature profile during the transient approach to steady state operation was measured in detail. A 5 °C evolution of the difference of temperature between the hot end and the cold end of the magnetocaloric bed due to regeneration is reported. A model is developed for the heat transfer and fluid mechanics of the four sequential processes in each cycle of thermal wave propagation in the regenerative bed combined with the magnetocaloric effect. The basic equations that can be used in simulation of magnetic refrigeration systems are derived and the design parameters are discussed.  相似文献   

19.
The time-variable performance of a Refrigerant 22 ice-bank system was simulated by a dynamic model which was derived by assuming that heat transfer was always the limiting process, and which thus ignored hydrodynamic processes. The model comprised four ordinary differential equations describing the position of the ice front, the water temperature, and the refrigerant evaporation and condensation temperatures, each of which was derived by energy balance, plus a number of algebraic equations. Measured plant performance was accurately predicted except immediately after start-up, and in circumstances in which the assumption that the dynamics of refrigerant flow did not exert any controlling influence on the overall process dynamics was inadequate (for example, when the thermostatic expansion valve operation becomes unstable). The model requires only data that should be readily available or can be easily estimated, and thus it is suitable for analyses in the design of ice bank systems to handle time-varying conditions. Simple dynamic models ignoring hydrodynamics can be adequate in circumstances where the main source of variation arises beyond the refrigeration circuit itself.  相似文献   

20.
A new three-parameter cubic equation of state is proposed in which the repulsion pressure term of the semiempirical van der Waals equation has been modified based on the hard-sphere potential and a functional form similar to Redlich-Kwong attraction term is adopted for the attraction term. All three parameters are treated as functions of temperature. For the purpose of examining the applicability of the new equation, it was applied to describe the thermodynamic properties of difluoromethane (R-32) and pentafluoroethane (R-125). It has been found that the essential thermodynamic properties are represented by the new equation as accurately as a conventional far-complicated modified Benedict-Webb-Rubin equation in the working range of refrigeration equipment. The new cubic equation was also compared with the Peng-Robinson equation and the Carnahan-Starling-De Santis equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号