首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Methods for determination of the crack opening stress intensity factor (Kop) and for estimation of the effective stress intensity factor range (ΔKeff) are evaluated for crack growth test data of aluminum alloys. Three methods of determining Kop, visual measurement, ASTM offset compliance method, and the neural network method proposed by Kang and Song, and three methods of estimating ΔKeff, conventional, the 2/P10 and 2/PI methods proposed by Donald and Paris, are compared in a quantitative manner by using evaluation criteria. For all Kop determination methods discussed, the 2/PI method of estimating ΔKeff provides good results. The neural network method of determining Kop provides good correlation of crack growth data. It is recommended to use 2/PI estimation with the neural Kop determination method. The ASTM offset method used in conjunction with 2/PI estimation shows a possibility of successful application. It is desired to improve the ASTM method.  相似文献   

2.
《Wear》1986,107(3):245-262
Fretting fatigue and normal, or unfretting, fatigue tests of a stainless steel SUS304L and an aluminium alloy A2024-T3 were carried out to investigate the effects of the contact pressure and the stress ratio on the crack propagation behaviour. The crack propagation behaviour was represented by the crack propagation rate da/dNversus the crack length a or the stress intensity factors ΔKeff and Kmax In fretting fatigue, crack propagation was divided into two stages, namely SI and SII. The value of da/dN in the SI stage was very high, even under a stress intensity factor less than the threshold for normal fatigue, and decreased gradually with crack growth because of crack closure and the decreasing fretting effect. The decrease in da/dN was marked in the case of high contact pressure and low stress ratio such as when R = −0.33, where R denotes the minimum stress divided by the maximum stress. During fretting fatigue crack closure occurred at an oblique short crack in the early stages of crack propagation in both the SUS304L steel and the A2024-T3 alloy; it also occurred at the oblique cracked surface of the shear lips formed in the A2024-T3 alloy during crack growth. However, in the SII stage, which followed the SI stage, da/dN increased with crack growth as for normal fatigue.  相似文献   

3.
A new hybrid composite (APAL: Aramid Patched Aluminum Alloy), consisting of a 2024-T3 aluminum alloy plate sandwiched between two aramid/epoxy laminate (HK 285/RS 1222), was developed. Fatigue crack growth behavior was examined at stress ratios of R=0.2, 0.5 using the aluminum alloy and two kinds of the APAL with different fiber orientation (0°/90° and 45° for crack direction). The APAL showed superior fatigue crack growth resistance, which may be attributed to the crack bridging effect imposed by the intact fibers in the crack wake. The magnitude of crack bridging was estimated quantitatively and determined by a new technique on basis of compliances of the 2024-T3 aluminum alloy and the APAL specimens. The crack growth rates of the APAL specimens were reduced significantly as comparison to the monolithic aluminum alloy and were not adequately correlated with the conventional stress intensity factor range(ΔK). It was found that the crack growth rate was successfully correlated with the effective stress intensity factor range (ΔK eff =K br -K ct ) allowing for the crack closure and the crack bridging. The relation between da/dN and theΔK eff was plotted within a narrow scatter band regardless of kind of stress ratio (R=0.2, 0.5) and material (2024-T3 aluminum alloy, APAL 0°/90° and APAL±45°). The result equation was as follow:da/dN=6.45×10−7(ΔK eff )2.4.  相似文献   

4.
Fatigue tests by axial loading (R-0.05) were carried out to investigate short fatigue crack growth behavior in 2 1/4 Cr-1 Mo steel at room temperature using smooth and a small notched flat specimen. All the data of the fatigue crack growth rate in the present tests were analyzed as a function of the stress intensity factor equation in conjunction with crack closure behavior. Analysis was performed accounting for the relation of surface effective stress range,Ua and depth effective stress range,Ub. In the case of isotropic crack growth properties,Ub=(ΔKta/ΔKtb) ·Ua. By use ofUb obtained from the analysis, crack growth rates to surface direction coincide with those of depth direction.  相似文献   

5.
Bearing area analysis has been used to study the real area of contact and compliance of rough turned steel cylinders in compression. Calculations show that the elastic real area of contact is very small compared to the plastic real area of contact, and that local compliance due to flattening of asperity tips is a small proportion of the total compliance obtained from experiments. The fact that increased load brings more and more new asperities under load rather than enlarging the contact spots leads to a rather simple load-compliance relation for a rough cylinder, viz., W' = Nh · K1δn, where W0 = K1δn defines the load-compliance relation of the individual asperities, and Nh represents the number of asperities bearing the load.  相似文献   

6.
Generally the fretting fatigue S-N curve has two regions: one is the high cycle (low stress) region and the second is the low cycle (high stress) region. In a previous paper we introduced the fretting fatigue life estimation methods in high cycle region by considering the wear process; with this estimation method the fretting fatigue limit can be estimated to be the crack initiation limit at the contact edge. In this paper we estimate the low cycle fretting fatigue life based on a new critical distance theory, modified for a high stress region using ultimate tensile strength σB and fracture toughness KIC. The critical distance for estimating low cycle fretting fatigue strength was calculated by interpolation of the critical distance on the fretting fatigue limit (estimated from σw0 and ΔKth) with critical distance on static strength (estimated from σB and KIC). By unifying this low cycle fretting fatigue life estimation method with the high cycle fretting fatigue life estimation method, which was presented in the previous paper, we can estimate the total fretting life easily. And to confirm the availability of this estimation method we perform the fretting fatigue test using Ni-Mo-V steel.  相似文献   

7.
In this work, we examined the influence of microstructural changes, such as an intermetallic sigma (??) phase, on the fatigue behavior of high-temperature aged AISI 316L stainless steel. Nondestructive ultrasonic test and fatigue crack growth tests were performed to determine the threshold stress intensity factor of these artificially aged specimens. Ultrasonic test results characterizing the microstructural changes were compared with those of the fatigue tests to propose an empirical formula capable of predicting the threshold stress intensity factor by a nondestructive method. We observed a strong correlation between the increase in the volume fraction of the ?? phase and the decrease of ??Kth. Ultrasonic velocity increased in response to the coarsening behavior of the ?? phase in the vicinity of the grain boundaries.  相似文献   

8.
Fatigue behavior of as-cast and extruded AZ61 magnesium alloys in ambient air (20 °C–55%RH) was investigated. It was found that size and distribution of cast defect influenced tensile and fatigue performance of the as-cast alloy. Fatigue limit of the as-cast alloy was significantly low compared to the extruded alloy. The casting defects served as stress concentration sites for fatigue crack nucleation. Fatigue tests were also carried out on a high Mn content alloy. All of the specimens failed from an inclusion near the specimen surface. Fatigue limit of Mg alloy with high Mn content was lower compared to that of the low Mn content alloy. Further, investigation on the effect of texture on fatigue and fatigue crack growth behavior of the extruded AZ61 magnesium alloy plate was carried out. The results showed that fatigue strength in the longitudinal direction to the extruded direction was higher compared to those in the transverse and 45° directions. Significant effect of specimen orientation on fatigue crack growth behavior for both short and long cracks was found near the threshold region. However, regardless of specimen orientation, the da/dN–ΔKeff curves for all three kinds of specimens were in a narrow band. It is suggested that the difference in the fatigue life among the specimen orientations will be mainly due to the difference in the crack closure behavior. A transition of fracture mechanism was found for a long crack. Slip fracture mechanism was dominant above the transition point, whereas below the transition point, slip fracture mechanism was associated with cleavage fracture.  相似文献   

9.
The stress field around the dynamically propagating interface crack tip under a remote mixed mode loading condition has been studied with the aid of dynamic photoelastic method. The variation of stress field around the dynamic interface crack tip is photographed by using the Cranz-Shardin type camera having 106 fps rate. The dynamically propagating crack velocities and the shapes of isochromatic fringe loops are characterized for varying mixed load conditions in double cantilever beam (DCB) specimens. The dynamic interface crack tip complex stress intensity factors,K 1 andK 2, determined by a hybrid-experimental method are found to increase as the load mixture ratio of y/x (vertical/horizontal) values. Furthermore, it is found that the dynamically propagating interface crack velocities are highly dependent upon the varying mixed mode loading conditions and that the velocities are significantly small compared to those under the mode I impact loading conditions obtained by Shukla (Singh & Shukla, 1996a, b) and Rosakis (Rosakis et al., 1998) in the USA.  相似文献   

10.
The conventional fracture mechanics parameters KIC and/or JIC are used as fracture toughness criteria necessary for the start of crack propagation under plane strain conditions. These criteria are defined only for small-scale yielding or infinitesimal deformation, though actual fractures involve large plastic deformation. Hence, measurement of fracture resistance during crack propagation is difficult with the conventional parameters.Estimating the mechanical conditions around the propagating crack tip is very useful for reducing damage during accidental fracture. Therefore, establishing a criterion for crack propagation with large-scale yielding is very important for not only science fields but also some industrial fields. For fractures with large-scale yielding, micro- or mesoscale damage processes in the crack tip vicinity have to be considered.In this study, Gurson's constitutive model for void occurrence and growth was introduced into the finite element method to discuss failure behavior in the crack tip vicinity. Fast crack propagation behavior under high-speed deformation was simulated using the moving finite element method based on the Delaunay automatic triangulation. The excellent far-field integral path independence of the T* integral was verified for pure mode I fast crack propagation and non-straight crack propagation under mixed mode conditions. The void growth conditions near the crack propagation path were evaluated.  相似文献   

11.
A phenomenological model of polishing hemispherical silicon asperities with spherical diamond abrasives is presented. Removal of the asperity material is quantitatively determined by a removal rate constant K. It is based on our molecular dynamics (MD) simulation studies considering the probability of removal of asperity atoms by an abrasive. The dependence of the removal rate constant K on the diameter and velocity of abrasives, number of asperities and abrasives per unit area, and cutting depth has been investigated. The rate constant K is found to be insensitive to the density of asperities, but linearly dependent on the density of abrasives.  相似文献   

12.
D.R. Burton  M.J. Lalor 《Wear》1982,83(1):25-36
A prospective new optical non-contact method for the assessment of surface texture is presented. A dual-beam laser Doppler anemometer is employed and the parameter “fringe visibility” is used as an indication of surface asperity size and geometry. The method was tested on specimens resulting from three different manufacturing processes, i.e. grinding, milling and turning, which possessed a range of Ra values from 0.025 to 50 μm. Both static and dynamic measurement configurations were examined.The experimental data are complemented by a review of the theoretical considerations and a computer model which considers the quantitative effects of variation in the relative asperity size, i.e. fringe spacing, and collection optics.  相似文献   

13.
The asymptotic problem of a conducting crack emanating from the vertex of a wedge in an anisotropic dielectric material under purely electric loading is investigated. The wedge crack in an isotropic material is solved using a conformal mapping technique. The solution of the wedge crack in an anisotropic dielectric material is obtained from that for the transformed isotropic problem after applying a linear transformation method. The electric field intensity factor for the anisotropic wedge crack is obtained in the closed form. The effects of crack and wedge angles as well as anisotropic parameters on the electric field intensity factor are illustrated. The electric field intensity factor is numerically calculated by using the J integral and finite element analysis to validate the exact solution of the electric field intensity factor.  相似文献   

14.
Based on orthogonal test for air bending of high-strength steel sheets, 125 values of sheet thickness (t), tool gap (c), punch radius (r), ratio of yield strength to Young??s modulus (?? y /E), and punch displacement (e) are used to model the springback for air bending of high-strength sheet metal using the genetic algorithm (GA) and back propagation neural network (BPNN) approach, where the positive model and reverse model of springback prediction are established, respectively, with GA and BPNN. Adopting the ??object-positive model?Creverse model?? learning method, air bending springback law is studied with positive model and punch radius is predicted by reverse model. Manifested by the experiment for air bending forming of a workpiece used as crane boom, the prediction method proposed yields satisfactory effect in sheet metal air bending forming and punch design.  相似文献   

15.
针对工程实际中低周疲劳裂纹闭合状态难以判定与表征的问题,研究了基于磁特性参数的裂纹闭合临界状态表征规律及模型。以Q235B钢为实验材料,进行分级加载、卸载实验,采用TSC-5M-32金属磁记忆检测仪采集磁特性参数,研究了裂尖裂尾不同塑性区对磁场的影响,通过对比柔度微分法,确定裂纹闭合临界载荷来分析裂纹闭合临界状态磁特性参数ΔHp变化规律。结果表明:载荷小于裂纹闭合临界点Pop时裂纹闭合,ΔHp出现极小值拐点;载荷等于Pop时处于裂纹闭合临界状态,ΔHp向上剧烈跳变出现转折点;载荷大于Pop时,裂纹完全张开,ΔHp维持在较高的水平上下波动。最后在实验的基础上,建立了基于合成磁特性参数ΔHp的裂纹闭合状态表征模型,验证结果表明,模型加载阶段和卸载阶段的模型预测值与实测值的最大相对误差分别为9.398%和11.549%,为工程实际中判断并表征裂纹闭合状态提供新的思路。  相似文献   

16.
To predict the fracture toughness of a single-layer graphene sheet (SLGS), analytical formulations were devised for the hexagonal honeycomb lattice using a linkage equivalent discrete frame structure. Broken bonds were identified by a sharp increase in the position of the atoms. As crack propagation progressed, the crack tip position and crack path were updated from broken bonds in the molecular dynamics (MD) model. At each step in the simulation, the atomic model was centered on the crack tip to adaptively follow its path. A new formula was derived analytically from the deformation and bending mechanism of solid-state carbon-carbon bonds so as to describe the mode I fracture of SLGS. The fracture toughness of single-layer graphene is governed by a competition between bond breaking and bond rotation at a crack tip. K-field based displacements were applied on the boundary of the micromechanical model, and FEM results were obtained and compared with theoretical findings. The critical stress intensity factor for a graphene sheet was found to be K IC = 2.63 ~ 3.2MPa \(\sqrt m \) for the case of a zigzag crack.  相似文献   

17.
Ultrafine grained (UFG) low carbon (0.15 wt.% C) steel produced by equal channel angular pressing (ECAP) was tested for investigating the effect of load ratio on the fatigue crack growth rate. Fatigue crack growth resistance and threshold of UFG steel were lower than that of as-received coarse grained steel. It was attributed to the less tortuous crack path. The UFG steel exhibited slightly higher crack growth rates and a lower ΔKth with an increase of R ratio. The R ratio effect on crack growth rates and ΔKth was basically indistinguishable at lower load ratio (R>0.3), compared to other alloys, which indicates that contribution of the crack closure vanishes. The crack growth rate curve for UFG steel exhibited a longer linear extension to the lower growth rate regime than that for the coarse grained as-received steel.  相似文献   

18.
In order to improve the current grinding procedure of the back-up roll of CVC hot rolling mills, the ratcheting short crack propagation behavior of medium carbon bainitic back-up roll steel was experimentally investigated under its actual work conditions, and the mechanism was theoretically analyzed based on contact mechanics and shakedown theory. After nucleation, the ratcheting short cracks propagate by the shear growth mechanism driven by the plastic strain accumulation resulting from the process of ratcheting induced by repetitive asperity contacts. They arrest on reaching the maximum depth ranging from 1.6 to 4.5 μm due to the presence of a large “quiescent zone” for crack propagation under the depth at which the maximum orthogonal shear stress is equal to the shear yield strength. At about 70–80% of the surface distress life, the cracks resume propagating by turning parallel to contact surfaces because of the greatly enhanced effect of the lubricant fluid trapped due to the crack geometry change and the residual tensile stress in vertical direction occurring upon unloading due to plastic deformation in the thin surface layer induced by the high cyclic asperity contact stresses. According to the ratcheting short crack propagation behavior and its mechanism, the probable grinding interval and grinding depth were proposed based on the preventive grinding strategy.  相似文献   

19.
A prediction method for the propagation life of fatigue crack for cracked components was provided and verified in this study to predict the propagation life of fatigue cracks on components in engineering applications conveniently and directly. In the simulation aspect, a finite element (FE) model of cracked specimen was created to obtain the stress intensity factor range ΔK. The FE model was verified by comparing simulated ΔK to a formulary calculated one. The simulated ΔK could be used for studying the relationship with crack size. In the experimental aspect, the fatigue crack propagation test was conducted on three specimens. The material coefficients C and m were fitted according to Paris’ law. The load cycles with different crack depths were recorded in the testing process. The propagation life of fatigue cracks of specimen was predicted via the relationship between ΔK and crack size a according to Paris’ law. The comparison between predicted life and experimental life of specimens indicated the feasibility of the method. The proposed prediction method in this study for the propagation life of fatigue cracks can be used in engineering applications.  相似文献   

20.
Cast stainless steel may experience embrittlement when it is exposed approximately to 300°C for a long period. In the present investigation, the three classes of the thermally-aged CF8M specimen were prepared using an artificially-accelerated aging method. After the specimens were held for 300, 1800 and 3600hrs. at 430°C, respectively, the specimens were quenched in water which is at room temperature. Load versus load line displacement curves andJ- R curves were obtained using the unloading compliance method,J IC values were obtained using the ASTM E 813–87 and ASTM E 813–81 methods. In addition to these methods,J IC values were obtained using the SZW (stretch zone width) method described in JSME S 001–1981. The results of the unloading compliance method areJ Q = 543.9kj/m2 for virgin materials. The values ofJ IC for the degraded materials at 300, 1800 and 3600hrs. are obtained 369.25kJ/m2, 311.02kJ/2, 276.7kJ/2, respectively. The results obtained by the SZW method are compared with those obtained by the unloading compliance method. Both results are quite similar. Through the elastic-plastic fracture toughness test, it is found that the value ofJ IC is decreased with an increase of the aging time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号