首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ergonomics》2012,55(4):492-510
The performance of garments for outdoor activity was compared. Three fabrics, each in garments for the upper body, matched garment/wearer dimensions, were worn by 10 athletically ‘well-trained’ males under controlled conditions (hot 32 ± 2°C, 20 ± 2% relative humidity (RH); cold 8 ± 2°C, 40 ± 2% RH) with physical (instrumental) and sensory responses obtained during the trials. Differences in human responses to the fabrics/garments included heart rate, core temperature during run (hot, cold), rest (hot) and walk (cold), heat content of the body, humidity under garments during rest and run and time to onset of sweating. No such differences were identified for change in body mass, core temperature during walk (hot) and rest (cold), skin temperature, temperature of skin covered by the garment, humidity under the garments during walk or for any perceptions (thermal sensations, thermal comfort of torso, exertion, wetness). The garment in single jersey wool fabric performed best in both hot and cold conditions. Effects of garments on wearers are often related to properties of the fabrics from which the garments are made. This study shows that only some differences in fabric properties result in measurable thermophysiological and perceptual responses of the garment wearers and underlines the difficulty in predicting performance of garments/persons from laboratory tests on fabrics.  相似文献   

2.
How garments contribute to performance of the clothing system during wear is of interest, as is understanding the value of using fabric properties to inform end-use characteristics. To investigate the influences of layering upper-body garments, four fabrics were used to construct two first-layer garments (wool and polyester) and two outer-layer garments (wool and membrane laminate). Over six sessions, 10 moderately trained males wore each first-layer garment as a single layer and in combination with each outer-layer garment while resting, running and walking in cold environmental conditions (8 ± 1°C, 81 ± 4% RH). Here, the type of garment arrangement worn (fabric type or number of layers) had little influence on heart rate, core body temperature and change in body mass. Weighted mean covered skin temperature was warmer and weighted mean next-to-skin vapour pressure was typically higher (following the onset of exercise) with two layers versus one. Differences among fabrics for individual properties were typically overstated compared to differences among corresponding garments for physiological and psychophysical variables under the conditions of this study. These findings inform the interpretation of particular fabric properties and highlight issues to be acknowledged during development/refinement of fabric test methods.

Practitioner Summary: We examined the way in which selected fibre, fabric and garment (layering) characteristics contribute to performance of the clothing system during wear under cold conditions. Selected properties of the constituent fabrics were found to provide limited insight into how garments perform during wear under the conditions of this study.  相似文献   


3.
The ease allowance is an important criterion in garment design. It is often taken into account in the process of construction of garment patterns. However, the existing pattern generation methods cannot provide a suitable estimation of ease allowance, which is strongly related to wearer's body shapes and movements and used fabrics. They can only produce 2D patterns for fixed standard values of ease allowance. In this paper, we present a new method for optimizing the estimation of ease allowance of a garment using fuzzy logic and sensory evaluation. Based on the optimized values of ease allowance generated from fuzzy models related to different key body positions and different wearer's movements, we obtain an aggregated ease allowance using the OWA operator. This aggregated result can further improve the wearer's fitting perception of a garment and adjust the compromise between the style of garments and the fitting comfort sensation of wearers. The related weights of the OWA operator are determined according to designer's linguistic criteria on comfort and garment style. The effectiveness of our method has been validated in the design of trousers of jean type. It can be also applied for designing other types of garment.  相似文献   

4.
The aim of this study was to investigate the physiological and psychological responses during and after high-intensity exercise in a warm and humid environment in subjects wearing shirts of different fabrics. Eight healthy men exercised on two separate occasions, in random order, wearing two types of long-sleeve T-shirt: one made of polyester (PES) and the other of cotton fabric (CT). They performed three 20 min exercise bouts, with 5 min rest between each, and then rested in a chair for 60 min to recover. The ambient temperature was 25 °C and relative humidity was 60%. The exercise comprised of treadmill running at 8 km/h at 1° grade. Rectal temperature, skin temperatures at eight sites, heart rate, T-shirt mass and ratings of thermal, clothing wettedness, and shivering/sweating sensation were measured before the experiment, during the 5 min rest period after each exercise bout, and during recovery. Nude body mass was measured before the experiment and during recovery. The physiological stress index showed that the exercise produced a state of very high heat stress. Compared with exercise wearing the CT shirt, exercise wearing the PES fabric produced a greater sweating efficiency and less clothing regain (i.e., less sweat retention), but thermophysiological and subjective sensations during the intermittent high-intensity exercise were similar for both fabrics. However, skin temperature returned to the pre-exercise level faster, and the thermal and rating of shivering/sweating sensation were lower after exercise in the warm and humid environment in subjects wearing PES than when wearing the more traditional CT fabric.  相似文献   

5.
大部分成衣的设计以标准比例的人模作为参照,而对于非标准体型的顾客,标码 服装的大小尺寸则很难与之进行有效匹配。基于此,提出了一种面向不同体型特征的服装款 式迁移方法。首先,对于一批不同款式的服装,通过物理模拟的方式穿着到标模及非标模人 体之上,形成标模试穿的服装实例及非标模试穿的服装实例;其次,使用仿射变换表示同款 服装在标模及非标模下服装实例间的变形映射,并借助主成分分析法求解服装变形,在保留 因体型特征导致的服装形变的基础上,剔除由服装款式信息引起的服装形变;最后,将服装 变形用于标模到非标模的服装款式迁移,并使用平均离散曲率衡量迁移前后服装款式的改变 程度。实验结果表明,迁移后的服装携带了标模服装的款式信息,并保留了非标模服装的体 型特征。  相似文献   

6.
《Applied ergonomics》2011,42(1):46-51
The aim of this study was to investigate the physiological and psychological responses during and after high-intensity exercise in a warm and humid environment in subjects wearing shirts of different fabrics. Eight healthy men exercised on two separate occasions, in random order, wearing two types of long-sleeve T-shirt: one made of polyester (PES) and the other of cotton fabric (CT). They performed three 20 min exercise bouts, with 5 min rest between each, and then rested in a chair for 60 min to recover. The ambient temperature was 25 °C and relative humidity was 60%. The exercise comprised of treadmill running at 8 km/h at 1° grade. Rectal temperature, skin temperatures at eight sites, heart rate, T-shirt mass and ratings of thermal, clothing wettedness, and shivering/sweating sensation were measured before the experiment, during the 5 min rest period after each exercise bout, and during recovery. Nude body mass was measured before the experiment and during recovery. The physiological stress index showed that the exercise produced a state of very high heat stress. Compared with exercise wearing the CT shirt, exercise wearing the PES fabric produced a greater sweating efficiency and less clothing regain (i.e., less sweat retention), but thermophysiological and subjective sensations during the intermittent high-intensity exercise were similar for both fabrics. However, skin temperature returned to the pre-exercise level faster, and the thermal and rating of shivering/sweating sensation were lower after exercise in the warm and humid environment in subjects wearing PES than when wearing the more traditional CT fabric.  相似文献   

7.
The standardized sizes used in the garment industry do not cover the range of individual differences in body shape for most people, leading to ill-fitting clothes, high return rates and overproduction. Recent research efforts in both industry and academia, therefore, focus on virtual try-on and on-demand fabrication of individually fitting garments. We propose an interactive design tool for creating custom-fit garments based on 3D body scans of the intended wearer. Our method explicitly incorporates transitions between various body poses to ensure a better fit and freedom of movement. The core of our method focuses on tools to create a 3D garment shape directly on an avatar without an underlying sewing pattern, and on the adjustment of that garment's rest shape while interpolating and moving through the different input poses. We alternate between cloth simulation and rest shape adjustment based on stretch to achieve the final shape of the garment. At any step in the real-time process, we allow for interactive changes to the garment. Once the garment shape is finalized for production, established techniques can be used to parameterize it into a 2D sewing pattern or transform it into a knitting pattern.  相似文献   

8.
This study investigated the effects that a form fitted, moisture-wicking fabric shirt, promoted to have improved evaporative and ventilation properties, has on the physiological and perceptual responses during exercise in the heat. Ten healthy male participants completed two heat stress tests consisting of 45 min of exercise (50% VO2peak) in a hot environment (33 °C, 60% RH). One heat stress test was conducted with the participant wearing a 100% cotton short sleeved t-shirt and the other heat stress test was conducted with the participant wearing a short sleeved synthetic shirt (81% polyester and 19% elastane). Rectal temperature was significantly lower (P < 0.05) in the synthetic condition during the last 15 min of exercise. Furthermore, the synthetic polyester shirt retained less sweat (P < 0.05). As exercise duration increases, the ventilation and evaporation properties of the synthetic garment may prove beneficial in the preservation of body temperature during exercise in the heat.  相似文献   

9.
10.
《Ergonomics》2012,55(4):620-633
Abstract

Six young, healthy male subjects performed a series of experiments in a climatic chamber in different environmental conditions wearing protective ventilated NBC clothing. Ambient temperature, TA, ranged from -20 to 35°C, relative humidity, RH, from 20 to 85%, and air velocity, VA, from 0·1 to 5·0 ms?1. In addition, thermal radiation, measured by the temperature of the globothermometer, TG, was artificially increased in some experiments. A total of 32 experiments were performed. The subject had to exercise on a bicycle ergometer at a mechanical power of 60 W for 120 min. Heart rate, HR, oxygen uptake, VO2, skin temperature, Tsk and rectal temperature, Tre, were measured during the experiments together with the temperature of the space between skin and garment, Tu. Sweat loss was determined as the difference of the body weight before and after the experiment. Tu was well correlated with the chamber environmental parameters. During heat exposure work duration began to decrease progressively from a Tu 30°C, reducing to 40 min at the highest thermal load. About the same value of Tu, marked the departure of HR, VO2, Tsk and Tre from the values measured during the same work load in neutral conditions. Also, during cold exposure at -20°C work duration was reduced below 1 h, but the limit appeared to be the cold at the extremities. From these findings it appears that Tu is a good indicator of the thermal load and is related to the environmental condition by the equation: Tu = 9·93 + 0·56 TA + 0·023 TG + 0·14 RH (T in °C, RH in %. For better comfort and performance Tu should be monitored whenever a subject has to work wearing an NBC garment and the ventilating system must be adequate to fulfil the needs imposed on the subject by an adverse environment, in particular a high relative humidity.  相似文献   

11.
The word “fashion” is synonymous with the word “change”. Fashion begins with fabrics and fabrics begin with colour’. This famous remark/definition of ‘fashion’ must now be revised in the era of digital technology. In this paper, we propose a novel print design concept, from 3D garments to 2D textiles. By taking advantage of the cutting-edge developments in surface parameterisation, cloth simulation and texture assignment, we develop a computer system that allows designers to create figure-flattering prints directly onto 3D garments, and will output 2D pattern pieces with matched texture that are ready for digital printing and garment production. It reverses the traditional design process from 2D fabrics to 3D garments. The results produced by the proposed method guarantee textural continuity in both garment and pattern pieces. It not only releases apparel makers from the tedious work of matching texture along seams, but also provides users with a new tool to create one-of-a-kind fashion products by designing personalised prints.  相似文献   

12.

The presence of proper wrinkles is important while modeling realistic virtual garments. Unlike previously used full 3D information methods, our approach achieves detailed garment generation from a single image. First, we retrieve a garment image similar to the initial virtual garment based on content-based image retrieval (CBIR) method. Then, we preprocess the image with a combination of human body reshaping, image segmentation and shape recovery, to obtain the 3D wrinkle details. Finally, the garment height are synthesized into the virtual garment. For better suit the posture of the human body, excess garment energy are released to remove the unmatched wrinkles. We apply our method to various styles of virtual garments, and it enable virtual characters in general pose to be dressed in these garments and complete wrinkle generation. Compared with existing garment modeling methods, the experimental results show that the proposed method could quickly capture the realistic wrinkles of virtual garments with less manual operation and achieve more realistic wrinkles for virtual garments.

  相似文献   

13.
Theoretical analysis and experimentation show that a prototype body area network composed of 20 electrically conductive fabric sheets can transmit both signals and DC power sufficient for implementing a cable-free network in a garment. This wearable system has broad applications. The applications presented represent just two areas where our garment technology can be useful in the health-monitoring domain. As wearable computing matures, alternative electronic systems like ours can play a larger role in applications. Meanwhile, the DC-PLC system we've developed presents a workable model for the design of CF garments  相似文献   

14.
《Ergonomics》2012,55(7):1093-1101
Abstract

Estimates, based on American experience of work in the heat, indicate that in the UK, half a million workers or more may be working in thermally uncomfortable and stressfully hot environments. In addition, many will be experiencing cold working conditions and associated discomfort. The role of protective clothing as one of the factors involved in imposing thermal stress is emphasized.

One method of thermal stress control is to provide conditioned garments which warm or cool the wearer as required. The use of ‘air supplied’ garments for cooling is specifically dealt with and the methods of defining their performance reviewed. The application of the concept of ‘per cent wetted skin surface area’ is discussed as one method of defining the performance of air ventilated garments if thermal comfort cannot be achieved. The use of low pressure air for ventilating garments is proposed. The performance of such a system employing a small battery powered blower is defined in terms of the wearers work rate and supply air temperature and volume using the wetted surface area concept. The necessary steps to be taken by manufacturers if they are to develop the market for such conditioned garments are outlined.  相似文献   

15.
16.
This study examined whether cooling a fire-fighter with a high velocity fan, during 10 min rest pauses between, and following, 10 min work periods, decreases heat stress during repetitive fire-fighting activity. Twelve professional fire-fighters (mean age 31.8 +/- 6.7 years) completed two, 40 min work/recovery trials in an environmental chamber at 40 degrees C and 70% relative humidity (RH). One trial was termed an enhanced recovery (ER) trial and the other was termed a normal recovery (NR) trial. In both conditions subjects wore full protective clothing and breathing apparatus during the work. In the ER trial a subject removed his protective coat and sat in front of a fan during each recovery period. In the NR trial a subject merely unbuckled his coat and was not cooled by a fan during either recovery period. The group mean metabolic cost (VO2), and the exercise and recovery heart rates were significantly lower (p < or = 0.05) during the ER trial than in the NR condition. Group mean rectal temperature increased by 1.5 degrees C in the NR trial but by only 0.8 degree C during the ER trial. The latter group's more effective cooling indicates the potential of fan cooling to reduce physiological strain and decrease the risk of heat exhaustion during repetitive fire-fighting activity. The results suggest that a fire-fighter's short 10 min exposure to heavy work in a hot environment of 40 degrees C and 70% RH produces minimal heat stress in a healthy fire-fighter. However, a period of fire-fighting exposure greater than 10 min without adequate rest and cooling may lead to a significant accumulation of heat stress and fatigue during further fire-fighting activity, irrespective of physical prowess.  相似文献   

17.
《Ergonomics》2012,55(8):1375-1389
The purpose of this study was to investigate the significance of wet underwear and to compare any influence of fibre-type material and textile construction of underwear on thermoregulatory responses and thermal comfort of humans during rest in the cold. Long-legged/long-sleeved underwear manufactured from 100% polypropylene in a 1 -by-1 rib knit structure was tested dry and wet as part of a two-layer clothing system. In addition cotton (1-by-l rib knit), wool (1-by-l rib knit), polypropylene (fishnet), and a double-layer material manufactured from 47% wool and 53% polypropylene (interlock knit) was tested wet in the clothing system. In the wet condition 175 g of water was distributed in the underwear prior to the experiment. The test was done on eight men (Ta = 10°C, RH = 85%, Va < 01 m/s), and comprised a 60min resting period. Skin temperature, rectal temperature, and weight loss were recorded during the test. Total changes in body and clothing weight were measured separately. Furthermore, subjective ratings on thermal comfort and sensation were collected. The tests demonstrated the significant cooling effect of wet underwear on thermoregulatory responses and thermal comfort. Further, the tests showed that textile construction of underwear in a two-layer clothing ensemble has an effect on the evaporation rate from clothing during rest in the cold resulting in a significant difference in mean skin temperature. The thickness of the underwear has more of an influence on the thermoregulatory responses and thermal comfort, than the types of fibres tested.  相似文献   

18.
The effectiveness of intermittent, microclimate cooling for men who worked in US Army chemical protective clothing (modified mission-oriented protective posture level 3; MOPP 3) was examined. The hypothesis was that intermittent cooling on a 2 min on-off schedule using a liquid cooling garment (LCG) covering 72% of the body surface area would reduce heat strain comparably to constant cooling. Four male subjects completed three experiments at 30 degrees C, 30% relative humidity wearing the LCG under the MOPP 3 during 80 min of treadmill walking at 224 +/- 5 W . m(-2). Water temperature to the LCG was held constant at 21 degrees C. The experiments were; 1) constant cooling (CC); 2) intermittent cooling at 2-min intervals (IC); 3) no cooling (NC). Core temperature increased (1.6 +/- 0.2 degrees C) in NC, which was greater than IC (0.5 +/- 0.2 degrees C) and CC (0.5 +/- 0.3 degrees C) ( p < 0.05). Mean skin temperature was higher during NC (36.1 +/- 0.4 degrees C) than IC (33.7 +/- 0.6 degrees C) and CC (32.6 +/- 0.6 degrees C) and mean skin temperature was higher during IC than CC ( p < 0.05). Mean heart rate during NC (139 +/- 9 b . min(-1)) was greater than IC (110 +/- 10 b . min(-1)) and CC (107 +/- 9 b . min(-1)) ( p < 0.05). Cooling by conduction (K) during NC (94 +/- 4 W . m(-2)) was lower than IC (142 +/- 7 W . m(-2)) and CC (146 +/- 4 W . m(-2)) ( p < 0.05). These findings suggest that IC provided a favourable skin to LCG gradient for heat dissipation by conduction and reduced heat strain comparable to CC during exercise-heat stress in chemical protective clothing.  相似文献   

19.
《Ergonomics》2012,55(6):1114-1131
A condensation theory is presented that enables the calculation of the rate of vapour transfer with its associated effects on temperature and total heat transfer inside a clothing ensemble consisting of underclothing, enclosed air, and outer garment. The model is experimentally tested by three experiments; (1) impermeable garments worn by subjects with and without plastic wrap around the skin, blocking sweat evaporation underneath the clothing; (2) comparison of heat loss in impermeable and semi-permeable garments and the associated discomfort and strain; (3) subjects working in impermeable garments in cool and warm environments at two work rates, until tolerance. The measured heat exchange and temperatures are calculated with satisfying accuracy by the model (mean error = 11, SD = 10 Wm?2 for heat flows and 0·3 and0·9°C for temperatures, respectively). A numerical analysis shows that for total heat loss the major determinants are vapour permeability of the outer garment, skin vapour concentration and air temperature. In the cold the condensation mechanism may completely compensate for the lack of permeability of the clothing as far as heat dissipation is concerned, but in the heat impermeable clothing is more stressful.  相似文献   

20.
3D garment capture is an important component for various applications such as free‐view point video, virtual avatars, online shopping, and virtual cloth fitting. Due to the complexity of the deformations, capturing 3D garment shapes requires controlled and specialized setups. A viable alternative is image‐based garment capture. Capturing 3D garment shapes from a single image, however, is a challenging problem and the current solutions come with assumptions on the lighting, camera calibration, complexity of human or mannequin poses considered, and more importantly a stable physical state for the garment and the underlying human body. In addition, most of the works require manual interaction and exhibit high run‐times. We propose a new technique that overcomes these limitations, making garment shape estimation from an image a practical approach for dynamic garment capture. Starting from synthetic garment shape data generated through physically based simulations from various human bodies in complex poses obtained through Mocap sequences, and rendered under varying camera positions and lighting conditions, our novel method learns a mapping from rendered garment images to the underlying 3D garment model. This is achieved by training Convolutional Neural Networks (CNN‐s) to estimate 3D vertex displacements from a template mesh with a specialized loss function. We illustrate that this technique is able to recover the global shape of dynamic 3D garments from a single image under varying factors such as challenging human poses, self occlusions, various camera poses and lighting conditions, at interactive rates. Improvement is shown if more than one view is integrated. Additionally, we show applications of our method to videos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号