首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel format for performing capillary isotachophoresis (ITP) is described -- gradient elution ITP (GEITP). GEITP merges the recently described electrophoretic separation technique of gradient elution moving boundary electrophoresis (GEMBE) with an ITP enrichment step. GEMBE utilizes a combination of continuous sample injection with a pressure-controlled counterflow; as the counterflow is reduced, analytes are sequentially eluted onto the separation column and detected as boundary interfaces. By incorporating leading electrolytes into the counterflow and terminating electrolytes into the sample matrix, an ionic interface can be formed near the capillary inlet. The discontinuous buffer system forms highly enriched analyte zones outside of the capillary, which are then eluted onto the separation capillary as the counterflow is reduced. Separation of fluorescent analytes was achieved either through discrete electrolyte spacers added to the sample or by using ampholyte mixtures to form a continuum of spacers. As the ITP process occurs off-column, extremely short length separations can be achieved, as demonstrated by a separation in 30 microm. The effects of various parameters on the GEITP enrichment process are investigated, including initial counterflow rates, electric field, leading electrolyte concentration, and counterflow acceleration, which is an adjustable parameter allowing for highly flexible separations. Typical enhancements in limits of detection and sensitivity were greater than 10,000-fold and were achieved in less than 2 min, yielding low-picomolar detection limits using arc lamp illumination and low-cost CCD detection. An optimized system afforded greater than 100,000-fold improvement in detection of carboxyfluorescein in 8 min. Specific examples of enrichment and separation demonstrated include the following: small dye molecules, DNA, amino acid mixtures, and protein mixtures.  相似文献   

2.
Gao J  Xu J  Locascio LE  Lee CS 《Analytical chemistry》2001,73(11):2648-2655
An integrated platform is presented for rapid and sensitive protein identification by on-line protein digestion and analysis of digested proteins using electrospray ionization mass spectrometry or transient capillary isotachophoresis/capillary zone electrophoresis with mass spectrometry detection. A miniaturized membrane reactor is constructed by fabricating the microfluidic channels on a poly(dimethylsiloxane) substrate and coupling the microfluidics to a poly(vinylidene fluoride) porous membrane with the adsorbed trypsin. On the basis of he large surface area-to-volume ratio of porous membrane media, adsorbed trypsin onto the poly(vinylidene fluoride) membrane is employed for achieving ultrahigh catalytic turnover. The extent of protein digestion in a miniaturized membrane reactor can be directly controlled by the residence time of protein analytes inside the trypsin-adsorbed membrane, the reaction temperature, and the protein concentration. The resulting peptide mixtures can either be directly analyzed using electrospray ionization mass spectrometry or further concentrated and resolved by electrophoretic separations prior to the mass spectrometric analysis. This microfluidic system enables rapid identification of proteins in minutes instead of hours, consumes very little sample (nanogram or less), and provides on-line interface with upstream protein separation schemes for the analysis of complex protein mixtures such as cell lysates.  相似文献   

3.
Some basic aspects of capillary electrophoresis (CE) separations on a poly(methyl methacrylate) chip provided with two separation channels in the column-coupling (CC) configuration and on-column conductivity detectors were studied. The CE methods employed in this study included isotachophoresis (ITP), capillary zone electrophoresis (CZE), and CZE with on-line ITP sample pretreatment (ITP-CZE). Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed, and electrophoresis was a dominant transport process in the separations performed by these methods. Very reproducible migration velocities of the separated constituents were typical under such transport conditions, and consequently, test analytes could be quantified by various ITP techniques with 1-2% RSD. The CC configuration of the separation channels provides means for an effective combination of an enhanced load capacity of the separation system with high detection sensitivities for the analytes in concentration-cascade ITP separations. In this way, for example, succinate, acetate, and benzoate could be separated also in instances when they were present in the loaded sample (1.2 microL) at 1 mmol/L concentrations while their limits of detection ranged from 8 to 12 micromol/L concentrations. A well-defined ITP concentration of the analyte(s) combined with an in-column sample cleanup (via an electrophoretically driven removal of the matrix constituents from the separation compartment) can be integrated into the separations performed on the CC chip. These sample pretreatment capabilities were investigated in ITP-CZE separations of model samples in which nitrite, phosphate, and fluoride (each at a 10 micromol/L concentration) accompanied matrix constituents (sulfate and chloride) at considerably higher concentrations. Here, both the concentration of the analytes and cleanup of the sample were included in the ITP separation in the first separation channel while the second separation channel served for the CZE separation of the ITP pretreated sample and the detection of the analytes.  相似文献   

4.
A novel method for performing electrophoretic separations is described-gradient elution moving boundary electrophoresis (GEMBE). The technique utilizes the electrophoretic migration of chemical species in combination with variable hydrodynamic bulk counterflow of the solution through a separation capillary or microfluidic channel. Continuous sample introduction is used, eliminating the need for a sample injection mechanism. Only analytes with an electrophoretic velocity greater than the counterflow velocity enter the separation channel. The counterflow velocity is varied over time so that each analyte is brought into the separation column at different times, allowing for high-resolution separations in very short channels. The new variable of bulk flow acceleration affords a new selectivity parameter to electrophoresis analogous to gradient elution compositions in chromatography. Because it does not require extra channels or access ports to form an injection zone and because separations can be performed in very short channels, GEMBE separations can be implemented in much smaller areas on a micro-fluidic chip as compared to conventional capillary electrophoresis. Demonstrations of GEMBE separations of small dye molecules, amino acids, DNA, and immunoassay products are presented. A low-cost, polymeric, eight-channel multiplexed microfluidic device was fabricated to demonstrate the reduced area requirements of GEMBE; the device was less than 1 in.2 in area and required only n + 1 fluidic access ports per n analyses (in this instance, nine ports for eight analyses). Parallel separations of fluorescein and carboxyfluorescein yielded less than 3% relative standard deviation (RSD) in interchannel migration times and less than 5% RSD in both peak and height measurements. The device was also used to generate a calibration curve for a homogeneous insulin immunoassay using each of the eight channels as a calibration point with less than 5% RSD at each point with replicate analyses.  相似文献   

5.
A method with the ability to increase greatly both the resolution and efficiency of a given capillary electrophoretic system is described. This method differs from traditional capillary electrophoresis (CE) in that a counterflow is induced in the direction opposite to the electrokinetic migration of the analyte. This has the effect of extending not only the time the analytes migrate in the electric field but also the effective length and the effective applied voltage of the system. Previous work in our group with flow counterbalanced capillary electrophoresis has utilized an open tube of small inner diameter to reduce peak broadening caused by hydrodynamic flow. Narrow-diameter capillaries (5-10 microm) restricted analysis to fluorescent analytes and laser-induced fluorescence detection. The method described here uses a capillary of much larger inner diameter (75 microm) that has been packed with nonporous silica particles. The packing material reduces the amount of band broadening caused by pressure-induced flow relative to that experienced in an open tube. A larger diameter capillary allows the detection of analytes by UV absorption, not only eliminating the need to tag analytes with fluorescent tags but also allowing for the detection of a much broader range of analytes. The system was evaluated by studying the separations of several enantiomers using only beta-cyclodextrin as the chiral selector. The system was also used to resolve the two naturally occurring isotopes of bromine and to resolve phenylalanine from phenylalanine-d8. Relative to traditional CE, large improvements in resolution and separation efficiency have been achieved with this method.  相似文献   

6.
An integrated protein concentration/separation system, combining non-native isoelectric focusing (IEF) with sodium dodecyl sulfate (SDS) gel electrophoresis on a polymer microfluidic chip, is reported. The system provides significant analyte concentration and extremely high resolving power for separated protein mixtures. The ability to introduce and isolate multiple separation media in a plastic microfluidic network is one of two key requirements for achieving multidimensional protein separations. The second requirement lies in the quantitative transfer of focused proteins from the first to second separation dimensions without significant loss in the resolution acquired from the first dimension. Rather than sequentially sampling protein analytes eluted from IEF, focused proteins are electrokinetically transferred into an array of orthogonal microchannels and further resolved by SDS gel electrophoresis in a parallel and high-throughput format. Resolved protein analytes are monitored using noncovalent, environment-sensitive, fluorescent probes such as Sypro Red. In comparison with covalently labeling proteins, the use of Sypro staining during electrophoretic separations not only presents a generic detection approach for the analysis of complex protein mixtures such as cell lysates but also avoids additional introduction of protein microheterogeneity as the result of labeling reaction. A comprehensive 2-D protein separation is completed in less than 10 min with an overall peak capacity of approximately 1700 using a chip with planar dimensions of as small as 2 cm x 3 cm. Significant enhancement in the peak capacity can be realized by simply raising the density of microchannels in the array, thereby increasing the number of IEF fractions further analyzed in the size-based separation dimension.  相似文献   

7.
Microfabricated devices enable rapid separations of a variety of clinically significant analytes, including DNA, proteins, and amino acids. However, absorbance detection has been difficult to achieve on these devices, prohibiting analysis of nonfluorophore-bearing or nonfluorescently tagged analytes. An alternative detection technique exploiting indirect fluorescence has been adapted to the electrophoretic microchip to provide fast analysis of amino acids, bypassing the need for absorbance detection or fluorescence derivitization procedures. Nineteen of the standard amino acids could be detected with an average detection limit of 32.9 microM (approximately 1.6 amol). Despite the fact that the detection sensitivity was lower than that achievable by labeling the amino acids with fluorescein isothiocyanate (approximately 1 nM), circumventing sample preparation and the difficulties inherent with tagging complex samples make this technique attractive for a variety of assays where sensitivity is not critical. To demonstrate the applicability to real sample matrixes, the analysis of urine with elevated amino acid levels is used as a model system where the elevated levels are indicative of a variety of pathologies including amino acid metabolism disorders and kidney malfunction. The minimal sample handling and rapid separations achievable by employing indirect detection on microchips provides the potential for high-throughput applications for certain amino acid analyses.  相似文献   

8.
Temperature gradient focusing (TGF) is a recently developed technique for the simultaneous concentration and electrophoretic separation of ionic analytes in microfluidic channels. One drawback to TGF as it has previously been described is the limited peak capacity; only a small number of analyte peaks (approximately 2-3) can be simultaneously focused and separated. In this paper, we report on a variation of the TGF method whereby the bulk flow rate is varied over time so that a large number of analytes can be sequentially focused, moved past a fixed detection point, and flushed to waste. In addition to improved peak capacity, the detection limits of the scanning TGF method can be adjusted on-the-fly, as needed for different samples. Finally, scanning TGF provides a technique by which high-resolution, high-peak-capacity electrophoretic separations can be performed in simple, straight, and short microfluidic channels.  相似文献   

9.
A new technique is demonstrated for the simultaneous concentration and high-resolution separation of chiral compounds. With temperature gradient focusing, a combination of a temperature gradient, an applied electric field, and a buffer with a temperature-dependent ionic strength is used to cause analytes to move to equilibrium, zero-velocity points along a microchannel or capillary. Different analytes are thus separated spatially and concentrated in a manner that resembles isoelectric focusing but that is applicable to a greater variety of analytes including small chiral drug molecules. Chiral separations are accomplished by the addition of a chiral selector, which causes the different enantiomers of an analyte to focus at different positions along a microchannel or capillary. This new technique is demonstrated to provide high performance in a number of areas desirable for chiral separations including rapid separation optimization and method development, facile reversal of peak order (desirable for analysis of trace enantiomeric impurities), and high resolving power (comparable to capillary electrophoresis) in combination with greater than 1000-fold concentration enhancement enabling improved detection limits. In addition, chiral temperature gradient focusing allows for real-time monitoring of the interaction of chiral analyte molecules with chiral selectors that could potentially be applied to the study of other molecular interactions. Finally, unlike CE, which requires long channels or capillaries for high-resolution separations, separations of equivalent resolution can be performed with TGF in very short microchannels (mm); thus, TGF is inherently much more suited to miniaturization and integration into lab-on-a-chip-devices.  相似文献   

10.
Capillary zone electrophoresis (CZE) in nonaqueous media and in the presence of ionic additives has been successfully applied to the determination of compounds that differ only slightly in their electrophoretic mobilities. Triazine herbicides of environmental interest were chosen as test compounds because they behave as very weak bases. CZE separation of these analytes (especially chlorotriazines) in aqueous solution is difficult due to the low pH required for their conversion into protonated cationic form (HA(+)). However, in mixed nonaqueous solvents, 50% (v/v) acetonitrile-methanol, the acid-base characteristics of these compounds are modified, yielding the protonated ionic species that is susceptible to migration when subjected to an electric field. A noteworthy increase in separation selectivity and resolution can be achieved by using ionic additives. Thus, in this mode of capillary zone electrophoresis, separation is based on ionic interactions between the charged analytes and the ionic additive present in the separation medium. These interactions contribute to enhancing mobility differences and to improving analyte separation. For the separation of chloro- and methylthiotriazines, 10 mM perchloric acid in 50% (v/v) acetonitrile-methanol and 20 mM SDS proved to be satisfactory, providing high resolution in short analysis times. The selectivity achieved was found to depend on the degree of association of the analyte with the ionic additive in the nonaqueous medium. This permits manipulation of the selectivity of the electrophoretic separations as a function of the type and concentration of the ionic additive and of the nature of the nonaqueous medium employed.  相似文献   

11.
We report rapid and efficient electrophoretic separations of N-glycans on microfluidic devices. Using a separation length of 22 cm and an electric field strength of 750 V/cm, analysis times were less than 3 min, and separation efficiencies were between 400,000 and 655,000 plates for the N-glycans and up to 960,000 plates for other sample components. These high efficiencies were necessary to separate N-glycan positional isomers derived from ribonuclease B and linkage isomers from asialofetuin. Structural isomers of N-glycans derived from a blood serum sample of a cancer patient were also analyzed to demonstrate that clinically relevant, complex samples could be separated on-chip with efficiencies similar to those derived from model glycoproteins. In addition, we compared microchip and capillary electrophoresis under similar separation conditions, and the microchips performed as well as the capillaries. These results confirmed that the noncircular cross section of the microchannel did not hamper separation performance. For all experiments, the glycan samples were derivatized with 8-aminopyrene-1,3,6-trisulfonic acid to impart needed charge for electrophoresis and a fluorescent label for detection.  相似文献   

12.
An automated comprehensive isotachophoresis-capillary zone electrophoresis (ITP-CZE) system is described. The sample is focused in the first capillary by ITP and injected repeatedly into the second smaller diameter capillary for more rapid CZE separation. Since only small portions of the concentrated zones are sequentially injected for CZE separation, overloading was not observed. Moreover, the sensitivity is enhanced because all of the concentrated zones are analyzed and the results are summed. A single detector (only for the CZE dimension) is required, and accurate timing for CZE injection is not necessary. The system was evaluated using a mixture of angiotensins. The effect of addition of leading electrolyte at the junction of the ITP and CZE capillaries before each CZE run on comprehensive ITP-CZE peak area was studied, and leading electrolyte volumes between 7 and 11 microL led to the best sensitivity. Under optimized conditions, a detection limit of approximately 5 nM could be achieved by injecting 10 microL of angiotensin solution.  相似文献   

13.
Zheng J  Yeung ES 《Analytical chemistry》2002,74(17):4536-4547
We report the unexpected radial migration of DNA molecules in capillary electrophoresis (CE) with applied Poiseuille flow. Such movement can contribute to anomalous migration times, peak dispersion, and size and shape selectivity in CE. When Poiseuille flow is applied from the cathode to the anode, DNA molecules move toward the center of the capillary, forming a narrow, highly concentrated zone. Conversely, when the flow is applied from the anode to the cathode, DNA molecules move toward the walls, leaving a DNA-depleted zone around the axis. We showed that the deformation and orientation of DNA molecules under Poiseuille flow was responsible for the radial migration. By analyzing the forces acting on the deformed and oriented DNA molecules, we derived an expression for the radial lift force, which explained our results very well under different conditions with Poiseuille flow only, electrophoresis only, and the combination of Poiseuille flow and electrophoresis. Factors governing the direction and velocity of radial migration were elucidated. Potential applications of this phenomenon include an alternative to sheath flow in flow cytometry, improving precision and reliability of single-molecule detection, reduction of wall adsorption, and size separation with a mechanism akin to field-flow fractionation. On the negative side, nonuniform electroosmotic flow along the capillary or microfluidic channel is common in CE, and radial migration of certain analytes cannot be neglected.  相似文献   

14.
An external electric field driven in-channel detection technique for on-chip electrochemical detection in micro fabricated devices is described based on a microfluidic system containing an array of 20 microband electrodes. It is shown that an external electric field induces a potential difference between two gold microband electrodes in a poly(dimethylsiloxane) (PDMS) microchannel, and that this enables the electrochemical detection of electroactive species such as ascorbic acid and Fe(CN) 6 (4-). The results, which are supported by simulations of the behavior of the microband electrodes in the microfluidic system, show that the induced potential difference between the electrodes can be controlled by altering the external electric field or by using different microbands in the microband array. As the obtained currents depend on the concentrations of electroactive species in the flowing solution and the detection can be carried out anywhere within the channel without interference of the external electric field, the present approach significantly facilitates electrochemical detection in capillary electrophoresis. This approach consequently holds great promise for application in inexpensive portable chip-based capillary electrophoresis (CE) devices.  相似文献   

15.
We present a highly sensitive capillary electrophoresis (CE) assay that combines transient, single-interface on-chip isotachophoresis (ITP) and a laser-induced confocal fluorescence detection setup. We performed experimental parametric studies to show the effects of microscope objective specifications and intensity of excitation laser on optimization of a high-sensitivity on-chip CE detection system. Using the optimized detection system, single-molecule detection of Alexa Fluor 488 was demonstrated, and signal data were validated with autocorrelation analysis. We also demonstrated a separation and detection of 100 aM fluorophores (Alexa Fluor 488 and bodipy) in a fast assay using a high-sensitivity on-chip CE detection system and an ITP/CE protocol with no manual buffer exchange steps. This is, to the knowledge of the authors, the highest electrophoretic separation sensitivity ever reported.  相似文献   

16.
Microfabricated system for parallel single-cell capillary electrophoresis   总被引:4,自引:0,他引:4  
Munce NR  Li J  Herman PR  Lilge L 《Analytical chemistry》2004,76(17):4983-4989
Performing single-cell electrophoresis separations using multiple parallel microchannels offers the possibility of both increasing throughput and eliminating cross-contamination between different separations. The instrumentation for such a system requires spatial and temporal control of both single-cell selection and lysis. To address these problems, a compact platform is presented for single-cell capillary electrophoresis in parallel microchannels that combines optical tweezers for cell selection and electromechanical lysis. Calcein-labeled acute myloid leukemia (AML) cells were selected from an on-chip reservoir and transported by optical tweezers to one of four parallel microfluidic channels. Each channel entrance was manufactured by F2-laser ablation to form a 20- to 10-microm tapered lysis reservoir, creating an injector geometry effective in confining the cellular contents during mechanical shearing of the cell at the 10-microm capillary entrance. The contents of individual cells were simultaneously injected into parallel channels resulting in electrophoretic separation as recorded by laser-induced fluorescence of the labeled cellular contents.  相似文献   

17.
This paper describes a prototype of an integrated fluorescence detection system that uses a microavalanche photodiode (microAPD) as the photodetector for microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The prototype device consisted of a reusable detection system and a disposable microfluidic system that was fabricated using rapid prototyping. The first step of the procedure was the fabrication of microfluidic channels in PDMS and the encapsulation of a multimode optical fiber (100-microm core diameter) in the PDMS; the tip of the fiber was placed next to the side wall of one of the channels. The optical fiber was used to couple light into the microchannel for the excitation of fluorescent analytes. The photodetector, a prototype solid-state microAPD array, was embedded in a thick slab (1 cm) of PDMS. A thin (80 microm) colored polycarbonate filter was placed on the top of the embedded microAPD to absorb scattered excitation light before it reached the detector. The microAPD was placed below the microchannel and orthogonal to the axis of the optical fiber. The close proximity (approximately 200 microm) of the microAPD to the microchannel made it unnecessary to incorporate transfer optics; the pixel size of the microAPD (30 microm) matched the dimensions of the channels (50 microm). A blue light-emitting diode was used for fluorescence excitation. The microAPD was operated in Geiger mode to detect the fluorescence. The detection limit of the prototype (approximately 25 nM) was determined by finding the minimum detectable concentration of a solution of fluorescein. The device was used to detect the separation of a mixture of proteins and small molecules by capillary electrophoresis; the separation illustrated the suitability of this integrated fluorescence detection system for bioanalytical applications.  相似文献   

18.
A miniaturized surface plasmon resonance sensor has been used as an on-line detector for capillary electrophoresis separations. The capillary was modified slightly to shield the sensor electronics from the high voltages applied during the separation. A three-component mixture of high refractive index materials was separated and detected at the millimolar level by an untreated gold-sensing surface. A simple protein immobilization procedure was used to functionalize the surface for selective protein detection. A hybrid buffer system was developed, in which both the deposition of immobilized protein layers and the electrophoretic delivery of protein analytes were optimized. The detection system has a reproducibility of 15%, a dynamic range of 3 orders of magnitude, and a detection limit for IgG of 2 fmol.  相似文献   

19.
The noninvasive monitoring of protein secretion of cells responding to drug treatment is an effective and essential tool in latest drug development and for cytotoxicity assays. In this work, a surface functionalization method is demonstrated for specific detection of protein released from cells and a platform that integrates highly sensitive optical devices, called whispering‐gallery mode biosensors, with precise microfluidics control to achieve label‐free and real‐time detection. Cell biomarker release is measured in real time and with nanomolar sensitivity. The surface functionalization method allows for antibodies to be immobilized on the surface for specific detection, while the microfluidics system enables detection in a continuous flow with a negligible compromise between sensitivity and flow control over stabilization and mixing. Cytochrome c detection is used to illustrate the merits of the system. Jurkat cells are treated with the toxin staurosporine to trigger cell apoptosis and cytochrome c released into the cell culture medium is monitored via the newly invented optical microfluidic platform.  相似文献   

20.
Draper MC  Niu X  Cho S  James DI  Edel JB 《Analytical chemistry》2012,84(13):5801-5808
Herein, we describe the monolithic integration of a multiphase microfluidic system to a microcapillary gel electrophoresis (μCGE) architecture for the complete isolation and storage of separated analyte bands. Within this platform, analyte molecules are separated using microchannel gel electrophoresis, and the eluted bands are stored in a sequence of approximately 40-600 encapsulating microdroplets. Importantly, employing such a system allows for total control of droplet size, shape, and composition. This approach is utilized to separate, optically detect, and encapsulate two fluorescent analytes from a composite sample mixture. Further to this, we subsequently investigate the potential of the system to be used as a concentration gradient generator through analysis of the segmented analyte bands and droplet composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号