首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanosized uniform silver powders and colloidal dispersions of silver were prepared from AgNO3 by a chemical reduction method involving the intermediate preparation of Ag2O colloidal dispersion in the presence of sodium dodecyle sulfate CH3(CH2)11OSO3Na as a surfactant. Several reducing agents such as hydrazine hydrate (N2H4·H2O), formaldehyde (HCOH) and glucose (C6H10O5) have been found to be preferable in this study from a practical point of view. The silver powder with the 60-120 nm particle size and colloidal dispersion with the particles size 10-20 nm and 0.5-2.0 wt.% concentration were successfully synthesized.  相似文献   

2.
Phase transitions and the mobility of proton-containing groups in hydrogen zirconium phosphate HZr2(PO4)3·nH2O with the NASICON structure were studied by X-ray powder diffraction, 1H, 31P NMR, IR spectroscopy and TG analysis. Heating HZr2(PO4)3·H2O above 420 K results in dehydration and in a rhombohedral-triclinic phase transition. Continued heating to about 490 K results in the thermal activation of cation disordering and phase transition of HZr2(PO4)3 from triclinic to rhombohedral phase. Parameter “a” of HZr2(PO4)3 lattice decreases during the heating. It is shown that oxonium ions in HZr2(PO4)3·H2O are characterized by high rotation and translation mobility. Rotation mobility of oxonium ions can be increased by the substitution of zirconium by yttrium or niobium.  相似文献   

3.
Flower-like Sm2(C2O4)3·10H2O had been synthesized by a facile complex agent assisted precipitation method. The flower-like Sm2(C2O4)3·10H2O was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, thermogravimetry-differential thermal analysis and photoluminescence. The possible growth mechanism of the flower-like Sm2(C2O4)3·10H2O was proposed. To extend this method, other Ln2(C2O4)3·nH2O (Ln = Gd, Dy, Lu, Y) with different morphologies also had been prepared by adjusting different rare earth precursors. Further studies revealed that besides the reaction conditions and the additive amount of complex agents, the morphologies of the as-synthesised lanthanide oxalates were also determined by the rare earth ions. The Sm2(C2O4)3·10H2O and Sm2O3 samples exhibited different photoluminescence spectra, which was relevant to Sm3+ energy level structure of 4f electrons. The method may be applied in the synthesis of other lanthanide compounds, and the work could explore the potential optical materials.  相似文献   

4.
Porous zirconium phosphate was prepared by silylation with organic silanes. Octylamine was intercalated into α-Zr(HPO4)2·H2O for expanding interlayer spacing and 1,2-bis(dimethylchlorosilyl)ethane (BMCE) was used for silylation of inorganic layers in toluene. The number of octhylamine molecules intercalated was similar to the number of phosphorus in the inorganic layers. On the other hand, that of BMCE molecule after silylating treatment was much smaller than that of phosphorus. The interlayer spacing of silylated compound was confirmed to expand via high-temperature XRD patterns and was preserved on thermal treatment up to around 500 °C. The maximum specific surface area of the silylated compound heated at 300 °C was around 70 m2/g, though that was smaller for silylated compounds heated at higher and lower temperature.  相似文献   

5.
We have carried out in situ high temperature X-ray diffraction (HTXRD) studies of silicalite-1 (S-1) and metallosilicate molecular sieves containing iron, titanium and zirconium having Mobil Five (MFI) structure (iron silicalite-1 (FeS-1), titanium silicalite-1 (TS-1) and zirconium silicalite-1 (ZrS-1), respectively) in order to study the thermal stability of these materials. Isomorphous substitution of Si4+ by metal atoms is confirmed by the expansion of unit cell volume by X-ray diffraction (XRD) and the presence of Si-O-M stretching band at ∼960 cm−1 by Fourier transform infrared (FTIR) spectroscopy. Appearance of cristobalite phase is seen at 1023 and 1173 K in S-1 and FeS-1 samples. While the samples S-1 and FeS-1 decompose completely to cristobalite at 1173 and 1323 K, respectively, the other two samples are thermally stable upto 1623 K. This transformation is irreversible. Although all materials show a negative lattice thermal expansion, their lattice thermal expansion coefficients vary. The thermal expansion behavior in all samples is anisotropic with relative strength of contraction along ‘a’ axes is more than along ‘b’ and ‘c’ axes in S-1, TS-1, ZrS-1 and vice versa in FeS-1. Lattice thermal expansion coefficients (αv) in the temperature range 298-1023 K were −6.75 × 10−6 K−1 for S-1, −12.91 × 10−6 K−1 for FeS-1, −16.02 × 10−6 K−1 for TS-1 and −17.92 × 10−6 K−1 for ZrS-1. The highest lattice thermal expansion coefficients (αv) obtained were −11.53 × 10−6 K−1 for FeS-1 in temperature range 298-1173 K, −20.86 × 10−6 K−1 for TS-1 and −25.54 × 10−6 K−1 for ZrS-1, respectively, in the temperature range 298-1623 K. Tetravalent cation substitution for Si4+ in the lattice leads to a high thermal stability as compared to substitution by trivalent cations.  相似文献   

6.
Chemical interactions in mixed, aqueous solutions of NH4HCO3 and M(NO3)3·9H2O, where M stands for Ho, Sm, or La, were facilitated under various hydrothermal treatment conditions (pH 8-12 and temperature = 75-135 °C). The solution chemistry established did not make available necessary concentrations of soluble HCO3 and MO(OH)2 species for the formation of dawsonite-type ammonium hydroxymetalocarbonates, NH4M(CO3)(OH)2, but, alternatively, high concentrations of soluble CO32−, and M(H2O)n3+ or M(H2O)n−1(OH)2+ facilitating, respectively, precipitation of corresponding hydrated carbonate, M2(CO3)2·2H2O, or carbonate hydroxide, MCO3(OH). X-ray powder diffractometry, infrared spectroscopy, and thermal analyses proved alternative formation of Ho2(CO3)3·2H2O or LaCO3(OH) under the whole set of hydrothermal treatment conditions probed, and Sm2(CO3)3·2H2O at pH < 10 or SmCO3(OH) at pH ≥ 10, thus implying dependence of the composition of the product carbonate compound on the hydrolysability of the initial M(H2O)n3+ species and, hence, the metal ionic size (La > Sm > Ho). Calcination of the various hydrothermal treatment products at ≥600 °C resulted in the thermal genesis of the corresponding sesqui-oxides (M2O3). Bulk and surface characterization studies of the product oxides, employing N2 sorptiometry and scanning electron microscopy, in addition to the above analytical techniques, revealed overall strong crystallinity, large average crystallite size, and well-defined particle morphology. They revealed, moreover, surfaces, though of limited accessibilities (≤13 m2/g), exposing OH groups of various coordination symmetries and, hence, acid-base properties, thus furnishing promising surface catalytic attributes.  相似文献   

7.
Monoclinic Li3V2(PO4)3/C composite synthesized by ascorbic acid reduction method is examined as a cathode material for Li-ion batteries. Transmission electron microscopy (TEM) images show that the nano-size particles are obtained. The reversible capacity of Li3V2(PO4)3/C prepared with LiOH and H3PO4 is 141.2 mAh g−1 after 100 cycles at 1C discharge rate between 3 V and 4.8 V, and the retention rates of discharge capacity is 93.4%. Ascorbic acid plays not only as reduction reagent, but also as carbon sources. This strategy shortens the time of solid state reaction and facilitates the procedure of synthesis. Effects of different precursors materials on the performance of the Li3V2(PO4)3/C are investigated.  相似文献   

8.
Calcium phenyl phosphate (CaPP) was synthesized from a mixture of Ca(OH)2 and phenyl phosphate (C6H5PO4H2) in an aqueous media. XRD pattern of CaPP exhibited five diffraction peaks at 2θ = 6.6, 13.3, 20.0, 26.8 and 33.7°. The d-spacing ratio of these peaks was ca. 1:1/2:1/3:1/4:1/5. The molar ratios of Ca/P and phenyl/P of CaPP were 1.0 and 0.92, respectively, and the chemical formula of the material was expressed as (C6H5PO4)0.92(HPO4)0.08Ca·1.3H2O, similar to that of dicalcium phosphate dihydrate (CaHPO4·2H2O: DCPD). These results allowed us to infer that CaPP is composed of a multilayer alternating bilayer of phenyl groups of the phosphates and DCPD-like phase. The structure of the material was essentially not altered after aging at pH 9.0-11.0 and 85 °C in an aqueous media. While, after aging at pH ≤8.0, the diffraction peaks of CaPP were suddenly weakened and disappeared at pH 7.0. Besides, new peaks due to calcium hydroxyapatite (Ca10(PO4)6(OH)2: Hap) appeared and their intensity was strengthened with decreasing the solution pH. TEM observation revealed that the Hap particles formed at pH 6.0 are fibrous with ca. 1.5 μm in length and ca. 0.2 μm in width. From these results, it is presumed that the layered CaPP was dissolved, hydrolyzed and reprecipitated to fibrous Hap particles at pH ≤8.0 and 85 °C in aqueous media. This phase transformation of CaPP in Hap resembled to the formation mechanism of Hap in animal organism.  相似文献   

9.
A borate compound was adopted as a new host material of Eu3+ and Tb3+ activators to fabricate efficient luminescence materials. The phosphor compositions, Gd1−xEuxCa3(GaO)3(BO3)4 and Gd1−xTbxCa3(GaO)3(BO3)4, were synthesized by conventional solid-state reactions. The crystalline phases of the resulting powders were identified using an X-ray diffraction system. Their photoluminescence properties were investigated under long-wavelength UV excitation. The Eu3+-doped and Tb3+-doped GdCa3(GaO)3(BO3)4 phosphors efficiently emitted red and green light, respectively. The temperature dependency of emission intensity was measured in a range from room temperature to 150 °C. The emission intensities of the red and green phosphors at 150 °C are 87% and 91% of those at room temperature, respectively. In addition, the decay times of both the red and green phosphors are shorter than 3 ms.  相似文献   

10.
Mesoporous carbon materials formed by nanosized particles have been synthesized by means of a nanocasting technique based on the use of mesostructured silica materials as templates. We found that the modification of the chemical characteristics of the surfactant employed allows mesostructured silica materials with particle sizes <100 nm to be synthesised. The mesoporous carbons obtained from these silica materials retain the structural properties of the silica used as template and consequently they have a particle size in the 20-100 nm range. These carbons exhibit large BET surfaces areas (up to 1300 m2 g−1) and high pore volumes (up to 2.5 cm3 g−1), a framework confined porosity made up of uniform mesopores (3.6 nm) and an additional textural porosity arising from the interparticle voids between the sub-micrometric particles. The main advantage of nanometer-sized mesoporous carbons in relation to the micrometer-sized carbons is that they have enhanced mass transfer rates, which is important for processes such as adsorption or catalysis.  相似文献   

11.
Layered calcium phenyl phosphate ((C6H5PO4)0.92(HPO4)0.08Ca·1.3H2O: CaPP), which is composed of a multilayer alternating bimolecular layer of phenyl groups and amorphous calcium phosphate phase, was treated in aqueous media including different amounts of enzyme such as alkaline phosphatase (ALP) at pH = 9.6 and 37 °C for 48 h. Treating the CaPP in the absence of ALP took place only the dissolution of this material. When the CaPP particles were treated in the presence ALP, calcium hydroxyapatite (Ca10(PO4)6(OH)2: Hap) was formed. The yielded Hap contained no phenyl group and the molar ratio Ca/P of this material was 1.66, almost corresponding to 1.67 of the stoichiometric Ca/P ratio of Hap. TEM observation revealed that the irregular-shaped CaPP particles disappeared and rod-shaped Hap nano-particles were generated. The particle length and crystallite size of Hap were slightly increased on increasing the additive amount of ALP. These facts allow us to infer that the CaPP particles are dissolved, hydrolyzed and recrystallized to Hap by treating with ALP in aqueous media at body temperature of 37 °C and that the ALP plays as a catalyst for hydrolysis of phenyl phosphate ions. This phase transformation of CaPP in Hap in the presence of ALP resembles to the formation mechanism of Hap in animal organism.  相似文献   

12.
4ZnO·B2O3·H2O is commonly used as a flame-retardant filler in composite materials. The microstructure of the powder is of importance in its applications. In our study, for the first time, one-dimensional (1D) nanostructure of 4ZnO·B2O3·H2O with rectangle rod-like shape has been synthesized by a hydrothermal route in the presence of surfactant polyethylene glycol-300 (PEG-300). The nanorods have been characterized by X-ray powder diffraction (XRD), inductively coupled plasma with atomic emission spectroscopy (ICP-AES), thermogravimetry (TG) and differential thermal analysis (DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with selected area electron diffraction (SAED) as well as high-resolution transmission electron microscopy (HRTEM). These nanorods are about 70 nm in thickness, 150-800 nm in width and have lengths up to a few microns. 4ZnO·B2O3·H2O nanorods crystallize in the monoclinic space group P21/m, a = 6.8871(19) Å, b = 4.9318(10) Å, c = 5.7137(16) Å, β = 98.81(21)° and V = 191.779(71) Å3.  相似文献   

13.
Single-phase La1.2(Sr1.4Ca0.4)Mn2O7 has been synthesized from the aqueous solution of metal nitrates and citric acid by the sol-gel technique. Small particle size with high homogeneity of the powder was obtained. The valence of Mn is determined to be 3.45±0.05 by chemical titration. The MR ratio [ρρ(H)]/ρ(H), is 115% (102 K, 1.5 T) for the composition prepared by the citrate route, and is nearly three times larger than that of the sample prepared by solid state reaction.  相似文献   

14.
A new lithium iron(III) phosphate, Li9Fe7(PO4)10, has been synthesized and is currently under electrochemical evaluation as an anode material for rechargeable lithium-ion battery applications. The sample was prepared via the ion exchange reaction of Cs5K4Fe7(PO4)101 in the 1 M LiNO3 solution under hydrothermal conditions at 200 °C. The fully Li+-exchanged sample Li9Fe7(PO4)102 cannot yet be synthesized by conventional high-temperature, solid-state methods. The parent compound 1 is a member of the Cs9−xKxFe7(PO4)10 series that was previously isolated from a high-temperature (750 °C) reaction employing the eutectic CsCl/KCl molten salt. The polycrystalline solid 1 was first prepared in a stoichiometric reaction via conventional solid-state method then followed by ion exchange giving rise to 2. Both compounds adopt three-dimensional structures that consist of orthogonally interconnected channels where electropositive ions reside. It has been demonstrated that the Cs9−xKxFe7(PO4)10 series possesses versatile ion exchange capabilities with all the monovalent alkali metal and silver cations due to its facile pathways for ion transport. 1 and 2 were subject to electrochemical analysis and preliminary results suggest that the latter can be considered as an anode material. Electrochemical results indicate that Li9Fe7(PO4)10 is reduced below 1 V (vs. Li) to most likely form a Fe(0)/Li3PO4 composite material, which can subsequently be cycled reversibly at relatively low potential. An initial capacity of 250 mAh/g was measured, which is equivalent to the insertion of thirteen Li atoms per Li9+xFe7(PO4)10 (x = 13) during the charge/discharge process (Fe2+ + 2e → Fe0). Furthermore, 2 shows a lower reduction potential (0.9 V), by approximately 200 mV, and much better electrochemical reversibility than iron(III) phosphate, FePO4, highlighting the value of improving the ionic conductivity of the sample.  相似文献   

15.
(Gd1−x,Eux)2O2SO4 nano-phosphors were synthesized by a novel co-precipitation method from commercially available Gd2O3, Eu2O3, H2SO4 and NaOH starting materials. Composition of the precursor is greatly influenced by the molar ratio of NaOH to (Gd1−x,Eux)2(SO4)3 (the m value), and the optimal m value was found to be 4. Fourier transform infrared spectrum (FT-IR) and thermal analysis show that the precursor (m = 4) can be transformed into pure (Gd1−x,Eux)2O2SO4 nano-phosphor by calcining at 900 °C for 2 h in air. Transmission electron microscope (TEM) observation shows that the Gd2O2SO4 phosphor particles (m = 4) are quasi-spherical in shape and well dispersed, with a mean particle size of about 30-50 nm. Photoluminescence (PL) spectroscopy reveals that the strongest emission peak is located at 617 nm under 271 nm light excitation, which corresponds to the 5D0 → 7F2 transition of Eu3+ ions. The quenching concentration of Eu3+ ions is 10 mol% and the concentration quenching mechanism is exchange interaction among the Eu3+ ions. Decay study reveals that the 5D0 → 7F2 transition of Eu3+ ions has a single exponential decay behavior.  相似文献   

16.
Low temperature co-fired ceramic (LTCC) is prepared by sintering a glass selected from CaO-SiO2-B2O3 system, and its sintered bodies are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It is found that the optimal sintering temperature for this glass-ceramic is 820 °C for 15 min, and the major phases of this material are CaSiO3, CaB2O4 and SiO2. The glass-ceramic possesses excellent dielectric properties: ?r = 6.5, tan δ < 2 × 10−3 at 10 MHz, temperature coefficient of dielectric constant about −51 × 10−6 °C−1 and coefficient of thermal expansion about 8 × 10−6 °C−1 at 20-400 °C. Thus, this material is supposed to be suitable for the tape casting process and be compatible with Ag electrode, which could be used as the LTCC materials for the application in wireless communications.  相似文献   

17.
Mesoporous carbon spheres serving as electrode materials for supercapacitors were synthesized by a facile polymerization-induced colloid aggregation method using melamines as a carbon precursor and commercial colloidal silica as a silica source for hard template. After the carbonization of as-formed resins-template composites at 1000 °C and the removal of the silica template by hydrofluoric acid, the resulting mesoporous carbon spheres with a diameter size of ∼5 μm, specific surface area (up to 1280 m2/g) and uniform pore size as large as 30 nm could be obtained. Due to the enriched nitrogen content and the large pore size of the mesoporous carbon spheres affecting the surface wettability, resistance, and ion diffusion process in the pores, the mesoporous carbon spheres showed a high specific capacitance of 196 F/g in 5 mol/l H2SO4 electrolytes at a discharge current density of 1 A/g.  相似文献   

18.
A novel red long lasting phosphorescent materials β-Zn3(PO4)2:Mn2+,Sm3+ is firstly synthesized by high-temperature solid-state reaction. The influence of Sm3+ ions on luminescence and long lasting phosphorescence properties of Mn2+ in phosphor β-Zn3(PO4)2:Mn2+,Sm3+ are systematically investigated. It is found that the red phosphorescence (λ = 616 nm) performance of Mn2+ ion such as brightness and duration is largely improved when Sm3+ ion is co-doped into the matrix in which Mn2+ ion acts as luminescent center and Sm3+ ion plays an important role of electron trap. Thermoluminescence spectrums show that there exists one peak in β-Zn3(PO4)2:Mn2+,Sm3+, the depth of which is 0.33 eV, and that there are three peaks in β-Zn3(PO4)2:Mn2+, among which the depth of the lowest temperature peak in β-Zn3(PO4)2:Mn2+ is 0.37 eV. Such differences in the trap depth result in the improvement of red long lasting phosphorescence of Mn2+ in present matrix.  相似文献   

19.
Lithium iron phosphate was prepared by hydrothermal synthesis using LiOH·H2O, FeSO4·7H2O and H3PO4 as raw materials. The effects of pH value of reaction solution on particle morphology and electrochemical property were investigated. The pH value of the reaction solution was adjusted in the range of 2.5-8.8 by dilute sulfuric acid and ammonia water. The samples were characterized by field-emission scanning electronic microscope (FE-SEM), X-ray powder diffraction (XRD), constant-current charge/discharge cycling tests and chemical analysis. The results indicated that the particles exhibited acute angle diamond flake-like morphology at pH = 2.5, and as the pH value increased, the particle became hexagon flake-like, round flake-like and irregular flake-like morphology gradually. The optimal sample synthesized at pH = 6.4 exhibited discharge capacities of 151.8 mAh g−1 at 0.2 C rate and 129.3 mAh g−1 at 3 C rate. It was found that pH value affected the morphologies and properties of the product by means of different crystal growth rates.  相似文献   

20.
The (C3H12N2)0.94[Mn1.50Fe1.50III(AsO4)F6] and (C3H12N2)0.75[Co1.50Fe1.50III(AsO4)F6] compounds 1 and 2 have been synthesized using mild hydrothermal conditions. These phases are isostructural with (C3H12N2)0.75[Fe1.5IIFe1.5III(AsO4)F6]. The compounds crystallize in the orthorhombic Imam space group. The unit cell parameters calculated by using the patterns matching routine of the FULPROOF program, starting from the cell parameters of the iron(II),(III) phase, are: a = 7.727(1) Å, b = 11.047(1) Å, c = 13.412(1) Å for 1 and a = 7.560(1) Å, b = 11.012(1) Å, c = 13.206(1) Å for 2, being Z = 8 in both compounds. The crystal structure consists of a three-dimensional framework constructed from edge-sharing [MII(1)2O2F8] (M = Mn, Co) dimeric octahedra linked to [FeIII(2)O2F4] octahedra through the F(1) anions and to the [AsO4] tetrahedra by the O(1) vertex. This network gives rise two kinds of chains, which are extended in perpendicular directions. Chain 1 is extended along the a-axis and chain 2 runs along the c-axis. These chains are linked by the F(1) and O(1) atoms and establish cavities delimited by eight or six polyhedra along the [1 0 0] and [0 0 1] directions, respectively. The propanediammonium cations are located inside these cavities. The thermal study indicates that the structures collapse with the calcination of the organic dication at 255 and 285 °C for 1 and 2, respectively. The Mössbauer spectra in the paramagnetic state indicate the existence of two crystallographically independent positions for the iron(III) cations and a small proportion of this cation in the positions of the divalent Mn(II) and Co(II) ones. The IR spectrum shows the protonated bands of the H2N- groups of the propanediamine molecule and the characteristic bands of the [AsO4]3− arsenate oxoanions. In the diffuse reflectance spectra, it can be observed the bands characteristic of trivalent iron(III) cation and divalent Mn(II) and Co(II) ones in a distorted octahedral symmetry. The calculated Dq and B-Racah parameters for the cobalt(II) phase are 710 and 925 cm−1, respectively. The ESR spectra of compound 1 maintain isotropic with variation in temperature, being g = 1.99. Magnetic measurements for both compounds indicate that the main magnetic interactions are antiferromagnetic in nature. However, at low temperatures small ferromagnetic components are detected, which are probably due to a spin decompensation of the two different metallic cations. The hysteresis loops give values of the remnant magnetization and coercive field of 84.5, 255 emu/mol and 0.01, 0.225 T for phases 1 and 2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号