首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.  相似文献   

2.
The crystal structure of a recombinant polyomavirus VP1 pentamer (residues 32-320) in complex with a branched disialylated hexasaccharide receptor fragment has been determined at 1.9 A resolution. The result extends our understanding of oligosaccharide receptor recognition. It also suggests a mechanism for enhancing the fidelity of virus assembly. We have previously described the structure of the complete polyomavirus particle complexed with this receptor fragment at 3.65 A. The model presented here offers a much more refined view of the interactions that determine carbohydrate recognition and allows us to assign additional specific contacts, in particular those involving the (alpha2,6)-linked, branching sialic acid. The structure of the unliganded VP1 pentamer, determined independently, shows that the oligosaccharide fits into a preformed groove and induces no measurable structural rearrangements. A comparison with assembled VP1 in the virus capsid reveals a rearrangement of residues 32-45 at the base of the pentamer. This segment may help prevent the formation of incorrectly assembled particles by reducing the likelihood that the C-terminal arm will fold back into its pentamer of origin.  相似文献   

3.
Periodontitis and atherosclerosis have complex etiologies, genetic and gender predispositions, and potentially share many risk factors-the most significant of which may be smoking status. These diseases also have many pathogenic mechanisms in common. It is becoming increasingly clear that infections and chronic inflammatory conditions such as periodontitis may influence the atherosclerotic process. The severity and chronicity of periodontal disease provides a rich source of subgingival microbial and host response products and effects over a long time period. The objective of this review is to consider the mechanisms whereby diseases such as periodontitis, which is chronic and Inflammatory In nature and initiated by microbial plaque, can predispose to atherosclerosis. In common with periodontal disease. the pathogenesis of atherosclerosis is not completely understood and both diseases are currently under Intensive investigation. Two main processes in particular are worthy of consideration and may provide the link between these 2 diseases, namely the lipopolysaccharide-related responses and the hyperresponsive monocyte phenomenon. Insufficient experimental evidence exists, however, to further support these hypotheses at present and clearly more research is needed on both of these processes and the interrelationships between both diseases.  相似文献   

4.
VP26 is a 12-kDa capsid protein of herpes simplex virus 1. Although VP26 is dispensable for assembly, the native capsid (a T=16 icosahedron) contains 900 copies: six on each of the 150 hexons of VP5 (149 kDa) but none on the 12 VP5 pentons at its vertices. We have investigated this interaction by expressing VP26 in Escherichia coli and studying the properties of the purified protein in solution and its binding to capsids. Circular dichroism spectroscopy reveals that the conformation of purified VP26 consists mainly of beta-sheets (approximately 80%), with a small alpha-helical component (approximately 15%). Its state of association was determined by analytical ultracentrifugation to be a reversible monomer-dimer equilibrium, with a dissociation constant of approximately 2 x 10(-5) M. Bacterially expressed VP26 binds to capsids in the normal amount, as determined by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cryoelectron microscopy shows that the protein occupies its usual sites on hexons but does not bind to pentons, even when available in 100-fold molar excess. Quasi-equivalence requires that penton VP5 must differ in conformation from hexon VP5: our data show that in mature capsids, this difference is sufficiently pronounced to abrogate its ability to bind VP26.  相似文献   

5.
Most poliovirus (PV) strains, including PV PV-1/Mahoney, are unable to cause paralysis in mice. Determinants for restriction of PV-1/Mahoney in mice have been identified by manipulating PV-1 cDNA and located on the viral capsid protein VP1. These determinants consist of a highly exposed amino acid sequence on the capsid surface corresponding to the B-C loop (M. Murray, J. Bradley, X. Yang, E. Wimmer, E. Moss, and V. Racaniello, Science 241:213-215, 1988; A. Martin, C. Wychowski, T. Couderc, R. Crainic, J. Hogle, and M. Girard, EMBO J. 7:2839-2847, 1988) and of residues belonging to the N-terminal sequence located on the inner surface of the protein shell (E. Moss and V. Racaniello, EMBO J. 10:1067-1074, 1991). Using an in vivo approach, we isolated two mouse-neurovirulent PV-1 mutants in the mouse central nervous system after a single passage of PV-1/Mahoney inoculated by the intracerebral route. Both mutants were subjected to two additional passages in mice, plaque purified, and subsequently characterized. The two cloned mutants, Mah-NK13 and Mah-NL32, retained phenotypic characteristics of the parental PV-1/Mahoney, including epitope map, heat lability, and temperature sensitivity. Mah-NK13 exhibited slightly smaller plaques than did the parental virus. The nucleotide sequences of the mutant genomes were determined, and mutations were identified. Mutations were independently introduced into the parental PV-1/Mahoney genome by single-site mutagenesis. Mutated PV-1/Mahoney viruses were then tested for their neurovirulence in mice. A single amino acid substitution in the capsid proteins VP1 (Thr-22-->Ile) and VP2 (Ser-31-->Thr) identified in the Mah-NK13 and Mah-NL32 genomes, respectively, conferred the mouse-virulent phenotype to the mouse-avirulent PV-1/Mahoney. Ile-22 in VP1 was responsible for the small-plaque phenotype of Mah-NK13. Both mutations arose during the first passage in the mouse central nervous system. We thus identified a new mouse adaptation determinant on capsid protein VP1, and we showed that at least one other capsid protein, VP2, could also express a mouse adaptation determinant. Both determinants are located in the inside of the three-dimensional structure of the viral capsid. They may be involved in the early steps of mouse nerve cell infection subsequent to receptor attachment.  相似文献   

6.
Avian reoviruses are capable of inducing rapid and extensive syncytium formation, a process that occurs preferentially under conditions of neutral or alkaline pH. In order to ascertain whether the membrane fusion-inducing capability of avian reovirus confers a pH-independent entry mechanism on the virus, virus entry was investigated using internalization assays and several lysomotropic agents that inhibit endosomal acidification. The ability of avian reovirus to infect cells was severely restricted under all conditions that prevented endosomal acidification. The decreased infection efficiency in the presence of the lysomotropic agents correlated with an inhibition in the proteolytic processing of the major outer capsid protein mu 2C. The importance, with respect to virus infection, of the low pH-dependent cleavage of the avian reovirus mu 2C protein was confirmed by demonstrating that infectious subviral particles, generated by proteolytic processing in vitro, were capable of efficiently infecting cells in the presence of the lysomotropic agents. These results indicated that avian reovirus entry-specific membrane interactions are largely dependent on an endosome-mediated proteolytic processing of the virus particle, suggesting that the syncytium-inducing properly of the sigma 3 protein is not sufficient to promote virus uptake. Furthermore, avian reovirus internalization was associated with two distinct cleavages of the major outer capsid protein mu 2C, unlike the entry-specific processing of the analagous mammalian reovirus major outer capsid protein mu 1C. The mu 2C cleavages occured sequentially and appeared to involve distinct cleavage specificities. Moreover, the second cleavage event was observed to be both virus strain- and cell type-independent, suggesting that the cleavage is both specific and biologically significant.  相似文献   

7.
After budding, the human immunodeficiency virus (HIV) must 'mature' into an infectious viral particle. Viral maturation requires proteolytic processing of the Gag polyprotein at the matrix-capsid junction, which liberates the capsid (CA) domain to condense from the spherical protein coat of the immature virus into the conical core of the mature virus. We propose that upon proteolysis, the amino-terminal end of the capsid refolds into a beta-hairpin/helix structure that is stabilized by formation of a salt bridge between the processed amino-terminus (Pro1) and a highly conserved aspartate residue (Asp51). The refolded amino-terminus then creates a new CA-CA interface that is essential for assembling the condensed conical core. Consistent with this model, we found that recombinant capsid proteins with as few as four matrix residues fused to their amino-termini formed spheres in vitro, but that removing these residues refolded the capsid amino-terminus and redirected protein assembly from spheres to cylinders. Moreover, point mutations throughout the putative CA-CA interface blocked capsid assembly in vitro, core assembly in vivo and viral infectivity. Disruption of the conserved amino-terminal capsid salt bridge also abolished the infectivity of Moloney murine leukemia viral particles, suggesting that lenti- and oncoviruses mature via analogous pathways.  相似文献   

8.
9.
Twenty hybridoma cell lines producing monoclonal antibodies (MAbs) against serotype 1 infectious bursal disease virus (IBDV) of GBF-1 and the attenuated GBF-1E strains were produced. The MAbs recognized major structural proteins VP2 and VP3. MAb recognition sites were mapped using recombinant Escherichia coli clones which expressed N-terminal and (or) C-terminal truncated virus antigens, and competitive-binding assays. At least 3 conformation-dependent serotype 1 specific virus neutralizing antigenic sites and a linear antigenic site were defined on VP2 and VP3, respectively. Two of the conformational virus neutralizing antigenic sites were localized in the central area of VP2 consisting of 156 amino acid residues, and the linear epitope was localized in C-terminal 105 amino acid residues of VP3. Another conformational virus neutralizing antigenic site recognized with the virus neutralizing MAb GK-5 was not defined because GK-5 did not react with virus antigen expressed in recombinant E. coli. The conformational antigenic site was supposed to be composed of tertiary or quaternary protein structure, which may not be constructed in recombinant E. coli.  相似文献   

10.
11.
Two HIV-1 envelope mutant proteins were generated by introducing deletions in the first and second hypervariable gp120 regions (V1 and V2 loops, respectively) of a macrophage-tropic primary HIV-1 isolate, SF162, to study the effect of the deleted sequences on envelope structure, viral entry, and replication potentials. The first mutant lacked 17 amino acids of the V1 loop and the latter 30 amino acids of the V2 loop. A comparison of the immunochemical structure of the wild-type and mutant monomeric and virion-associated gp120 molecules revealed that the V1 and V2 loop deletions differentially altered the structure of the V3 loop, the CD4-binding site, and epitopes within conserved regions of gp120. Regardless of differences in structure, both mutated envelope proteins supported viral replication into peripheral blood mononuclear cells to levels comparable to those of the wild-type SF162 virus. However, they decreased the viral replication potential in macrophages, even though they did not alter the coreceptor usage of the viruses. These studies support and extend previous observations that a complex structural interaction between the V1, V2, and V3 loops and elements of the CD4-binding site of gp120 controls entry of virus into cells. The present studies, however, suggest that the effect of the V1 and V2 loops in viral entry is cell dependent.  相似文献   

12.
Insect iridoviruses (IV) have been found on all continents of the world and in a broad range of insect hosts. The host range for a single strain can cross several insect orders. This along with a paucity of molecular information on all but a few members has led to confusion in the taxonomy and classification of these viruses and in the identification of potentially novel isolates. To address this problem consensus PCR primers were designed to amplify and sequence a 500 bp region of the major capsid protein (MCP) gene. PCR products were amplified from eighteen IVs belonging to the genus Iridovirus. No product was observed for the chloriridovirus IV3. Phylogenetic analysis of the partial MCP gene sequence showed that the iridovirus genus can be divided into three groups. These results support previous studies where a range of molecular techniques were used. Group I contained PjIV and IV31, group II contained IV6 (CIV), IV21, and IV28, and group III contained IV1 (TIV), IV2 (SIV), IV9 (WIV), IV10, IV16, (CzIV), IV18, IV22, IV23 (BbIV), IV24, IV29, IV30, AgIV and an undescribed weevil IV. There was no correlation of relatedness with host of isolation but there was some correlation with geographic region of isolation. Sequence analysis also raised issues concerning the purity of some virus stocks and supported the view that some isolates should be considered as variants of one virus species.  相似文献   

13.
The ordered copolymerization of viral proteins to form the herpes simplex virus (HSV) capsid occurs within the nucleus of the infected cell and is a complex process involving the products of at least six viral genes. In common with capsid assembly in double-stranded DNA bacteriophages, HSV capsid assembly proceeds via the assembly of an outer capsid shell around an interior scaffold. This capsid intermediate matures through loss of the scaffold and packaging of the viral genomic DNA. The interior of the HSV capsid intermediate contains the viral protease and assembly protein which compose the scaffold. Proteolytic processing of these proteins is essential for and accompanies capsid maturation. The assembly protein (ICP35) is the primary component of the scaffold, and previous studies have demonstrated it to be capable of intermolecular association with itself and with the major capsid protein, VP5. We have defined structural elements within ICP35 which are responsible for intermolecular self-association and for interaction with VP5. Yeast (Saccharomyces cerevisiae) two-hybrid assays and far-Western studies with purified recombinant ICP35 mapped a core self-association domain between Ser165 and His219. Site-directed mutations in this domain implicate a putative coiled coil in ICP35 self-association. This coiled-coil motif is highly conserved within the assembly proteins of other alpha herpesviruses. In the two-hybrid assay the core self-association domain was sufficient to mediate stable self-association only in the presence of additional structural elements in either N- or C-terminal flanking regions. These regions also contain conserved sequences which exhibit a high propensity for alpha helicity and may contribute to self-association by forming additional short coiled coils. Our data supports a model in which ICP35 molecules have an extended conformation and associate in parallel orientation through homomeric coiled-coil interactions. In additional two-hybrid experiments we evaluated ICP35 mutants for association with VP5. We discovered that in addition to the C-terminal 25 amino acids of ICP35, previously shown to be required for VP5 binding, an additional upstream region was required. This region is between Ser165 and His234 and contains the core self-association domain. Site-directed mutations and construction of chimeric molecules in which the self-association domain of ICP35 was replaced by the GCN4 leucine zipper indicated that this region contributes to VP5 binding through mediating self-association of ICP35 and not through direct binding interactions. Our results suggest that self-association of ICP35 strongly promotes stable association with VP5 in vivo and are consistent with capsid formation proceeding via formation of stable subassemblies of ICP35 and VP5 which subsequently assemble into capsid intermediates in the nucleus.  相似文献   

14.
We previously identified a minimal 12-amino-acid domain in the C terminus of the herpes simplex virus type 1 (HSV-1) scaffolding protein which is required for interaction with the HSV-1 major capsid protein. An alpha-helical structure which maximizes the hydropathicity of the minimal domain is required for the interaction. To address whether cytomegalovirus (CMV) utilizes the same strategy for capsid assembly, several glutathione S-transferase fusion proteins to the C terminus of the CMV assembly protein precursor were produced and purified from bacterial cells. The study showed that the glutathione S-transferase fusion containing 16 amino acids near the C-terminal end was sufficient to interact with the major capsid protein. Interestingly, no cross-interaction between HSV-1 and CMV could be detected. Mutation analysis revealed that a three-amino-acid region at the N-terminal side of the central Phe residue of the CMV interaction domain played a role in determining the viral specificity of the interaction. When this region was converted so as to correspond to that of HSV-1, the CMV assembly protein domain lost its ability to interact with the CMV major capsid protein but gained full interaction with the HSV-1 major capsid protein. To address whether the minimal interaction domain of the CMV assembly protein forms an alpha-helical structure similar to that in HSV-1, peptide competition experiments were carried out. The results showed that a cyclic peptide derived from the interaction domain with a constrained (alpha-helical structure competed for interaction with the major capsid protein much more efficiently than the unconstrained linear peptide. In contrast, a cyclic peptide containing an Ala substitution for the critical Phe residue did not compete for the interaction at all. The results of this study suggest that (i) CMV may have developed a strategy similar to that of HSV-1 for capsid assembly; (ii) the minimal interaction motif in the CMV assembly protein requires an alpha-helix for efficient interaction with the major capsid protein; and (iii) the Phe residue in the CMV minimal interaction domain is critical for interaction with the major capsid protein.  相似文献   

15.
The cytoplasmic domain of an envelope transmembrane glycoprotein (gp30) of bovine leukemia virus (BLV) has two overlapping copies of the (YXXL)2 motif. The N-terminal motif has been implicated in in vitro signal transduction pathways from the external to the intracellular compartment and is also involved in infection and maintenance of high viral loads in sheep that have been experimentally infected with BLV. To determine the role of YXXL sequences in the replication of BLV in vitro, we changed the tyrosine or leucine residues of the N-terminal motif in an infectious molecular clone of BLV, pBLV-IF, to alanine to produce mutated proviruses designated Y487A, L490A, Y498A, L501A, and Y487/498A. Transient transfection of African green monkey kidney COS-1 cells with proviral DNAs that encoded wild-type and mutant sequences revealed that all of the mutated proviral DNAs synthesized mature envelope proteins and released virus particles into the growth medium. However, serial passages of fetal lamb kidney (FLK) cells, which are sensitive to infection with BLV, after transient transfection revealed that mutation of a second tyrosine residue in the N-terminal motif completely prevented the propagation of the virus. Similarly, Y498A and Y487/498A mutant BLV that was produced by the stably transfected COS-1 cells exhibited significantly reduced levels of cell-free virion-mediated transmission. Analysis of the protein compositions of mutant viruses demonstrated that lower levels of envelope protein were incorporated by two of the mutant virions than by wild-type and other mutant virions. Furthermore, a mutation of a second tyrosine residue decreased the specific binding of BLV particles to FLK cells and the capacity for viral penetration. Our data indicate that the YXXL sequences play critical roles in both viral entry and the incorporation of viral envelope protein into the virion during the life cycle of BLV.  相似文献   

16.
17.
Nucleic acid amplification by polymerase chain reaction (PCR) is a very powerful technique in terms of sensitivity but is limited in terms of ability to perform accurate quantitation. While there is a theoretical correlation between copies of input target sequence and those of PCR product, the quantitative nature of this relationship is obscured by unpredictable variations in reaction conditions and by inhibitory and/or stimulatory substances which might be present in sample preparations, especially those derived from biological fluids. To reliably estimate copies of input DNA target from PCR product, we designed a combination of internal and external control systems coupled to DNA/RNA hybridization and enzymatic immunodetection techniques. The internal control system served to monitor amplification efficiency and to correct for the effects of inhibitors or stimuli on the efficiency of the DNA amplification. The assay is quantitative, nonisotopic, and can be widely applied to assessment of the quantity of DNA present in a wide range of preparations.  相似文献   

18.
In most eukaryotic cells, entry into mitosis is tightly controlled and requires completely replicated and undamaged DNA. We show that the antitumor drug, fostricin, interferes with this control; it induces cycling cells to enter mitosis prematurely, and it can overcome the mitotic entry checkpoint, forcing into mitosis cells that were arrested in the division cycle by treatment with the DNA replication inhibitor aphidicolin or with the DNA-damaging agents camptothecin and teniposide. This effect was observed in all rodent, simian, and human cell lines tested. Fostriecin also hampers progression through the later stages of mitosis as determined by the absence of normal half-spindles, anaphase figures, and telophase figures. The only previously known target for fostriecin is topoisomerase II, which is inhibited in vitro with a 50% inhibitory concentration of 40 microM (T. J. Boritzki, T. S. Wolfard, J. A. Besserer, R. C. Jackson, and D. W. Fry. Inhibition of type II topoisomerase by fostriecin. Biochem. Pharmacol., 37: 4063-4068, 1988). We show that fostriecin is a more potent inhibitor of protein phosphatase 1, with a 50% inhibitory concentration of 4 microM and protein phosphatase 2A, with a 50% inhibitory concentration of 40 nM. Inhibition of the mitotic entry checkpoint and inhibition of protein phosphatases are novel properties for antitumor drugs with potential or proven therapeutic value.  相似文献   

19.
Agouti protein and Agouti-related protein (Agrp) are paracrine-signaling molecules that normally regulate pigmentation and body weight, respectively. These proteins antagonize the effects of alpha-melanocyte-stimulating hormone (alpha-MSH) and other melanocortins, and several alternatives have been proposed to explain their biochemical mechanisms of action. We have used a sensitive bioassay based on Xenopus melanophores to characterize pharmacologic properties of recombinant Agouti protein, and have directly measured its cell-surface binding to mammalian cells by use of an epitope-tagged form (HA-Agouti) that retains biologic activity. In melanophores, Agouti protein has no effect in the absence of alpha-MSH, but its action cannot be explained solely by inhibition of alpha-MSH binding. In 293T cells, expression of the Mc1r confers a specific, high-affinity binding site for HA-Agouti. Binding is inhibited by alpha-MSH, or by Agrp, which indicates that alpha-MSH and Agouti protein bind in a mutually exclusive way to the Mc1r, and that the similarity between Agouti protein and Agrp includes their binding sites. The effects of Agouti and the Mc1r in vivo have been examined in a sensitized background provided by the chinchilla (Tyrc-ch) mutation, which uncovers a phenotypic difference between overexpression of Agouti in lethal yellow (Ay/a) mice and loss of Mc1r function in recessive yellow (Mc1re/Mc1re) mice. Double and triple mutant studies indicate that a functional Mc1r is required for the pigmentary effects of Agouti, and suggest that Agouti protein can act as an agonist of the Mc1r in a way that differs from alpha-MSH stimulation. These results resolve questions regarding the biochemical mechanism of Agouti protein action, and provide evidence of a novel signaling mechanism whereby alpha-MSH and Agouti protein or Agrp function as independent ligands that inhibit each other's binding and transduce opposite signals through a single receptor.  相似文献   

20.
The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) protein which binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanine to threonine substitution at position 54 in I-FABP has been identified which affects fatty acid binding and transport, and is associated with the development of insulin resistance in several populations including Mexican-Americans and Pima Indians. To investigate the molecular basis of the binding properties of I-FABP, the 3D solution structure of the more common form of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy. Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed by using 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra (NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP was calculated by using the distance geometry program DIANA based on 2519 distance constraints obtained from the NMR data. Subsequent energy minimization was carried out by using the program SYBYL in the presence of distance constraints. The conformation of human I-FABP consists of 10 antiparallel beta-strands which form two nearly orthogonal beta-sheets of five strands each, and two short alpha-helices that connect the beta-strands A and B. The interior of the protein consists of a water-filled cavity between the two beta-sheets. The NMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP. The NMR results show significant conformational variability of certain backbone segments around the postulated portal region for the entry and exit of fatty acid ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号