共查询到20条相似文献,搜索用时 0 毫秒
1.
Lower-flow regime sand waves emerge from flat sand beds under steady uniform flow conditions. The time variation of the sand-wavelet height and length from inception to equilibrium are derived from linear and nonlinear ordinary differential equation models. The nonlinear model predicts more reasonably time variations of the bed-form length than the linear model. The results of the model are supported by the laboratory experimental data of Bishop in 1977 and Melville and Coleman in 1994. 相似文献
2.
Under pulse-type ground motions modal analysis is not quite efficient for estimating the elastic response of multi-degree-of-freedom systems, in particular when the effects of higher modes are significant. This paper first shows that the assumption of nondispersive damped waves for shear beams leads to inconsistent response estimation. Subsequently, a closed form time domain dispersive damped wave solution to the partial differential equation of motion is presented and it is verified with frequency domain solutions. Finally, using the solutions to the differential equation of motion, the response of frame structures with energy dissipating devices is studied. 相似文献
3.
4.
Jason T. DeJong Michael B. Fritzges Klaus Nüsslein 《Canadian Metallurgical Quarterly》2006,132(11):1381-1392
Current methods to improve the engineering properties of sands are diverse with respect to methodology, treatment uniformity, cost, environmental impact, site accessibility requirements, etc. All of these methods have benefits and drawbacks, and there continues to be a need to explore new possibilities of soil improvement, particularly as suitable land for development becomes more scarce. This paper presents the results of a study in which natural microbial biological processes were used to engineer a cemented soil matrix within initially loose, collapsible sand. Microbially induced calcite precipitation (MICP) was achieved using the microorganism Bacillus pasteurii, an aerobic bacterium pervasive in natural soil deposits. The microbes were introduced to the sand specimens in a liquid growth medium amended with urea and a dissolved calcium source. Subsequent cementation treatments were passed through the specimen to increase the cementation level of the sand particle matrix. The results of both MICP- and gypsum-cemented specimens were assessed nondestructively by measuring the shear wave velocity with bender elements. A series of isotropically consolidated undrained compression (CIUC) triaxial tests indicate that the MICP-treated specimens exhibit a noncollapse strain softening shear behavior, with a higher initial shear stiffness and ultimate shear capacity than untreated loose specimens. This behavior is similar to that of the gypsum-cemented specimens, which represent typical cemented sand behavior. SEM microscopy verified formation of a cemented sand matrix with a concentration of precipitated calcite forming bonds at particle-particle contacts. X-ray compositional mapping confirmed that the observed cement bonds were comprised of calcite. 相似文献
5.
Degree of Saturation and Liquefaction Resistances of Sand Improved with Sand Compaction Pile 总被引:1,自引:0,他引:1
Mitsu Okamura Masanori Ishihara Keiichi Tamura 《Canadian Metallurgical Quarterly》2006,132(2):258-264
Sand compaction pile (SCP) is a ground improvement technique extensively used to ameliorate liquefaction resistance of loose sand deposits. This paper discusses results of laboratory tests on high-quality undisturbed samples obtained by the in situ freezing method at six sites where foundation soils had been improved with SCP. Inspection of samples revealed that the improved ground was desaturated during the ground improvement. Degree of saturation (Sr) was lower than 77% for the sand piles and 91% for the improved sand layers, while Sr was approximately 100% for improved clayey and silty soils. A good correlation was found between Sr and 5% diameter of the soil; the larger 5% diameter of soils (D5), the lower the degree of saturation. It appeared that the variation of Sr with D5 for soils within a month after the ground improvement work was quite similar in trend to that after more than several years. Degree of saturation of soils after several years was noticeably, but not significantly, higher as compared with that shortly after ground improvement, indicating longevity of air bubbles injected in the improved soil. Undrained cyclic shear tests were also carried out on saturated and unsaturated specimens and effects of desaturation on undrained cyclic shear strength were studied. The test results were summarized in a form of liquefaction resistance with reference to normalized standard penetration test N-value. 相似文献
6.
The study identifies the causes of inconsistencies between the design and construction of large building projects. To achieve the study objectives, a questionnaire survey was carried out to collect information on potential causes of inconsistencies at the project design and construction interface. Responses from 27 contractors were analyzed. The results suggest that the involvement of designer as consultant, communication gap between constructor and designer, insufficient working drawing details, lack of coordination between parties, lack of human resources in design firm, lack of designer’s knowledge of available materials and equipment, and incomplete plans and specifications were considered as the most important causes of the project design and construction interface inconsistencies. On the other hand, project management as a professional service, weather conditions, nationalities of participants, involvement of the contractor in design conceptual phase, unforeseen problems, involvement of the contractor in design development phase, and government regulations were the least important causes of inconsistencies between professionals at the project design and construction interface in large building projects. 相似文献
7.
Based on the critical state concept and with the use of a state parameter, a unified generalized plasticity model is proposed for sand. The model uses a nonlinear critical state line. The plastic modulus, loading vectors and plastic flow direction vectors of a generalized plasticity model were modified so that they depend on the state parameter. With a single set of parameters, the model simulates the stress-deformation behavior of sand of different densities and pressure levels, under both drained and undrained conditions. A total of 12 parameters are required for monotonic loading and additional five parameters are included to consider cycling loading. The model is calibrated using the results of a minimum of two triaxial compression tests conducted on specimens of different densities and confining pressures. The model has been validated against the monotonic and cyclic test results of Toyoura sand, Nevada sand, and Fuji River sand. The comparison between simulations and test results showed that the model is capable of simulating sophisticated sand behavior. Its limitation in simulating monotonic loading following series of cyclic loadings of dense sand is discussed. 相似文献
8.
An experimental investigation of the shaft resistance of single vertical and batter piles pushed into sand was conducted. A prototype laboratory setup was designed for testing relatively large model piles, inclined at an angle that varied between zero and 30° with the vertical. Two model piles having diameters of 38 and 76 mm were tested at a ratio of the pile’s length to diameter up to 40, and subjected to axial compression loading. The pile models were instrumented to allow direct measurements of the shaft resistance. A theoretical model was developed to take into account the asymmetrical earth pressure distribution around the pile shaft, the level of mobilization of the angle of friction between the pile shaft and the sand, and the pile diameter. The results predicted by the theory developed agreed well with the experimental results of the present investigation as well as other experimental and field results available in the literature. Design charts are presented for use in practice. The results of the present investigation support the concept of the critical depth for the shaft resistance of vertical and batter piles driven in sand. 相似文献
9.
Natural soil deposits and man-made earth structures exhibit complicated engineering behavior that is influenced by factors such as the stress level and drainage conditions. The stress conditions within a soil structure vary greatly, ranging from very low to very high values, due to the dead weight, loading and boundary conditions. Saturated sand deposits that exhibit drained conditions under static loading become undrained when subject to earthquake excitations. The Pastor–Zienkiewicz–Chan model has demonstrated considerable success in describing the inelastic behavior of soils under isotropic monotonic and cyclic loadings, including liquefaction and cyclic mobility. This study proposed modifications to the Pastor–Zienkiewicz–Chan model so that effects of stress level and densification behavior are simulated. The proposed model suggested that the angle of internal friction, elastic and plastic moduli are dependent on the pressure levels. Relevant modifications were made to incorporate a power term of mean effective stress on the loading plastic modulus so that a stress-level dependent volume change is obtained in combination with the stress-dilatancy relationship. To better simulate cyclic loading with reference to densification behavior, an exponential term of plastic volumetric strain is included for the unloading and reloading plastic moduli. A total of 11 parameters are needed for monotonic loading, whereas 15 parameters are needed in describing the cyclic behavior. The model simulations were compared with undrained and drained triaxial test results of several kinds of sand under dense and loose states. The predictive capability for monotonic and cyclic loading conditions was also demonstrated. 相似文献
10.
Discrete Element Modeling of Contact Creep and Aging in Sand 总被引:3,自引:0,他引:3
In this study, aging in dry, clean sand induced by contact creep is investigated through numerical simulations using the discrete element method. Simulation results demonstrate that contact creep initiates the redistribution of contact forces. Although contact creep produces a very small decrease in porosity (approximately 1.7%), a significant change in the contact force distribution is produced in the aged sample. The contact forces ultimately become more uniform in both magnitude and spatial distribution. This homogenization of contact forces leads to more stable force chains and therefore produces an increase in the small-strain stiffness, early strength, and dilatancy in the aged sample. Such increases are not found in the sample prepared to the same porosity as the aged sample but without aging. This is because, in generating this sample, the contact creep is not allowed and therefore its associated contact force distribution is less homogenized compared with that in the aged sample. 相似文献
11.
Saturation and Preloading Effects on the Cyclic Behavior of Sand 总被引:3,自引:0,他引:3
In order to study pore water pressure response and liquefaction characteristics of sand, which has previously experienced liquefaction, two series of cyclic triaxial tests were run on medium dense sand specimens. In the first test series the influence of the soil saturation under undrained cyclic loading has been studied. It summarizes results of cyclic triaxial tests performed on Hostun-RF sand at various values of the Skempton’s pore-pressure coefficient. Analysis of experimental results gives valuable insights on the effect of soil saturation on sand response to undrained cyclic paths. In the second series of tests, the preloading influence on the resistance to the sands liquefaction has been realized on samples at various histories of loading. It was found that a large preloading induces a reduction of the resistance of sands to liquefaction. 相似文献
12.
Angela R. Bielefeldt Camille McEachern Tissa Illangasekare 《Canadian Metallurgical Quarterly》2002,128(1):51-59
Biological activity in zones of chemical contamination changes the pore characteristics that control the flow of water and transport of dissolved chemicals in soils. To further the understanding of these processes, column experiments were performed to evaluate the effect of biomass growth on decane or naphthalene dissolved in simulated groundwater on the hydraulic conductivity and dispersivity of sand. The effect of grain size, groundwater flowrate, and nitrogen limitation were investigated. Given the low carbon loading resulting from the solubility of decane and naphthalene, sparse and discontinuous biomass growth reduced the hydraulic conductivity of the sand by 2 to 3 orders of magnitude after 35 to 63 days. This biogrowth initially increased dispersivity of the sand, but after longer periods of growth dispersivity, decreased to stable values near that of the clean sand. The results indicate that biogrowth can have significant effects in natural systems with low carbon loading and nitrogen availability, and should be taken into account when using models to predict contaminant transport in the field. 相似文献
13.
Experimental Study of Sand and Slurry Jets in Water 总被引:1,自引:0,他引:1
Neil Hall Mohammed Elenany David Z. Zhu N. Rajaratnam 《Canadian Metallurgical Quarterly》2010,136(10):727-738
This paper presents the results of an experimental study of turbulent sand jets and sand-water slurry jets impinging vertically into a stagnant water body. The jets contained silica sand with a median diameter D50 of 206?μm, and with an initial concentration 0.60 by volume for the sand jets, and 0.055–0.124 by volume for the slurry jets. The jets had densimetric Froude numbers between 2.0 and 5.94. The sand concentration and velocity profiles were measured simultaneously using a novel fiber optical probe, up to a distance of 130do for sand jets, and 65do for slurry jets, where do is the jet diameter at the water surface. The jets were found to have self-similar Gaussian profiles. The centerline sand concentration within the jets was found to decrease rapidly, following trends similar to single phase plumes. The centerline sand velocity profile decreased significantly before reaching a plateau region. The “terminal” centerline sand velocity within this region varies somewhat depending upon sand mass flux, and is between 0.32 and 0.43 m/s. The spreading rates of the jets were found to vary with the particle Froude number. Within the sand jets and the higher Froude number slurry jet, the sand concentration had a smaller spreading rate than the velocity. The other slurry jets had equal concentration/velocity spreading rates. The momentum flux of the sand within the jets was found to decrease sharply, followed by a constant flux below a depth of 25 to 30 jet diameters. 相似文献
14.
15.
Instability of granular material may lead to catastrophic events such as the gross collapse of earth structures, and thus it is an important topic in geotechnical engineering. In this paper, we adopt the micromechanics approach for constitutive modeling, in which the soil is considered an assembly of particles, and the stress-strain relationship for the assembly is determined by integrating the behavior of the interparticle contacts in all orientations. Although analyses regarding material instability have been extensively studied for a soil element at the constitutive level, it has not been considered at the interparticle contact level. Through an eigenvalue analysis, two modes of instability are identified at the local contact level: the singularity of tangential stiffness matrix and the loss of positiveness of second-order work. The constitutive model is applied to simulate drained and undrained triaxial tests on Toyoura sand of various densities under various confining pressures. The predictions are compared with experimentally measured instability at the assembly level. The modes of stability at the interparticle contact level and their relations to the overall instability of the assembly are also analyzed. 相似文献
16.
J. Murali Krishnan K. R. Rajagopal D. N. Little 《Canadian Metallurgical Quarterly》2006,132(6):632-640
A variety of hot mix asphalt mixtures are used in highway and runway pavement construction. Each mixture caters to specific needs. Mixtures differ from one another in the type and percentage of aggregates and asphalt used, and their response can be markedly different, and thus there is a need to develop constitutive models that can differentiate between the different kinds of mixtures. In this paper, we outline a general procedure for the constitutive modeling of bituminous mixtures. We illustrate the efficacy of this approach by means of an application to sand asphalt. The governing equations for this special problem reduce to a stiff nonlinear ordinary differential equation and this is solved numerically using Gear’s method. We compare the results of the predictions of the model that we have developed with the compressive creep experiments carried out by Wood and Goetz on a typical sand asphalt mixture and find them to be in good agreement. 相似文献
17.
S. Yimsiri K. Soga K. Yoshizaki G. R. Dasari T. D. O’Rourke 《Canadian Metallurgical Quarterly》2004,130(8):830-842
The soil–pipeline interactions in sand under lateral and upward movements are investigated with particular attention to the peak forces exerted on the pipe. The analytical solutions for estimating the peak forces are summarized and it is shown that, for deep embedment condition, there is large uncertainty in the true values since the bounds established by the analytical solutions are large. In order to find the solution for the peak force and to investigate its transition from shallow to deep failure mechanism, finite element analyses of lateral and upward pipe movements are performed for different embedment conditions. Two different soil models (Mohr–Coulomb and Nor–Sand models) are used for the simulations. The accuracy of the analysis is first examined by simulating experimental tank tests. The analysis is further extended to deeper embedment ratios of as large as 100. The obtained finite element results are used to construct a design chart for deep embedded pipelines. 相似文献
18.
R. Kulasingam Erik J. Malvick Ross W. Boulanger Bruce L. Kutter 《Canadian Metallurgical Quarterly》2004,130(11):1192-1202
The role of void redistribution in the liquefaction behavior of saturated sand slopes with and without silt interlayers was investigated using a series of dynamic centrifuge model tests. Twelve centrifuge model tests are described that represent four different simple slope configurations, a range of initial relative densities (DR), and three different input motions with different sequences of application. These experimental results demonstrate that the potential for void redistribution induced shear localizations and slope instability depends on the sand’s initial DR, slope geometry (silt layer shape, sand layer thickness), and shaking characteristics (duration, intensity, and history). The archived experimental data set provides a good basis for assessing the ability of numerical modeling methods to distinguish between conditions leading to localization or not. Apparent residual shear strengths mobilized in the models were backcalculated using techniques common to practice. The experimental and analytical results demonstrate that the apparent residual shear strength is unlikely to correlate closely to pre-earthquake penetration resistance alone, but rather is a function of the initial shear stresses and numerous factors affecting the process of void redistribution and localization. 相似文献
19.
Heavy metal migration through compacted, saturated sand and bentonite/soil admixtures were investigated using kinetic, batch sorption tests, and column tests. Sorption of Pb, Zn, and Cd at pH 5 by bentonite is found to be 411.2, 163.4, and 71.8 mL/g, respectively. The permeability of the compacted sand (8×10?4?cm/s) is found to be 6 orders of magniture higher than that of bentonite/soil admixture (about 8×10?10?cm/s) when permeated with metal solutions under an effective stress of 34.5 kPa (5 psi). The permeation of metal solutions into bentonite/soil admixture columns does not result in a significant increase in permeability. Experimental results of batch sorption and hydraulic conductivity tests were also analyzed with a computer-based simulation model, POLLUTE, to determine the transport parameters (effective porosity, dispersion coefficient, retardation) of chloride ions and heavy metals in a homogeneous compacted sand and bentonite/soil admixture using a curve fitting technique. 相似文献
20.
Effect of Loading Mode on Strain Softening and Instability Behavior of Sand in Plane-Strain Tests 总被引:4,自引:0,他引:4
Experimental data to study the effect of loading mode on the strain softening and instability behavior of sand under plane-strain conditions are presented in this paper. A new plane-strain apparatus was adopted to conduct K0 consolidated drained and undrained tests under both deformation-controlled and load-controlled loading modes. The drained behavior of very loose and medium dense sand and the undrained behavior of very loose sand under plane-strain conditions were characterized. The test results show that the loading mode affects the postpeak behavior and controls whether strain softening or instability will occur in the postpeak region. Shear bands occurred in tests conducted on medium dense sand, but not in tests for very loose sand. The failure line and critical state line are not affected by the loading mode. The study also shows that the concept of a unique “ultimate state” for both dense and loose sand as previously established based on conventional drained triaxial tests is not supported by the plane-strain data. 相似文献