首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Airport expansion projects often require the presence and movement of construction labor and equipment near critical airport traffic areas. This close proximity between construction activities and airport operations needs to be carefully considered during the planning of construction site layouts in order to minimize and eliminate all potential construction-related hazards to aviation safety. This paper presents the development of a multiobjective optimization model for planning airport construction site layouts that is capable of minimizing construction-related hazards and minimizing site layout costs, simultaneously. The model incorporates newly developed optimization functions and metrics that enable: (1) maximizing the control of hazardous construction debris near airport traffic areas; (2) minimizing site layout costs including the travel cost of construction resources and the cost of debris control measures on airport sites; and (3) satisfying all operational safety constraints required by the federal aviation administration as well as other practical site layout constraints. The model is implemented using a multiobjective genetic algorithm and an application example is analyzed to demonstrate the use of the model and its capabilities in optimizing construction site layouts in airport expansion projects.  相似文献   

2.
Construction operations in airport expansion projects often attract wildlife species to critical airport traffic areas leading to an increase in the risk of wildlife–aircraft collision accidents. Airport operators and construction planners need to carefully consider and minimize these wildlife hazards during the planning of construction site layouts in order to comply with Federal Aviation Administration recommendations. This paper presents the development of an advanced optimization model for planning airport construction site layouts that is capable of minimizing the hazards of wildlife attractants and minimizing the site layout costs, simultaneously. The model incorporates newly developed concepts and performance criteria that enable (1) quantifying, controlling, and minimizing the hazards of construction-related wildlife attractants near airport traffic areas; and (2) minimizing the travel cost of construction resources and the cost of devices installed to control wildlife on airport construction sites, while complying with all relevant aviation safety constraints. The model is developed using a multiobjective genetic algorithm and an application example is analyzed to demonstrate the use of the model in optimizing airport construction site layouts and its unique capability of generating optimal trade-offs between wildlife control and site layout costs.  相似文献   

3.
Airport expansion projects often require the presence of construction personnel, material, and equipment near airport secure areas/facilities, leading to an increase in the level of risk to airport security. Construction planners and airport operators need to carefully study this challenge and implement active measures in order to minimize construction-related security breaches and comply with all relevant Federal Aviation Administration guidelines. This paper presents the development of an advanced multiobjective optimization model for planning airport construction site layouts that is capable of minimizing construction-related security breaches while simultaneously minimizing site layout costs. The model incorporates newly developed criteria and performance metrics that enable evaluating and maximizing the construction-related security level in operating airports. The model is developed using a multiobjective genetic algorithm, and an application example is analyzed to demonstrate the use of the model and its unique capability of generating a wide spectrum of optimal trade-offs between construction-related airport security and site layout costs.  相似文献   

4.
A good site layout is vital to ensure the safety of the working environment and effective and efficient operations. Site layout planning has significant impacts on productivity, costs, and duration of construction. Construction site layout planning involves identifying, sizing, and positioning temporary and permanent facilities within the boundary of the construction site. Site layout planning can be viewed as a complex optimization problem. Although construction site layout planning is a critical process, systematical analysis of this problem is always difficult because of the existence of a vast number of trades and interrelated planning constraints. The problem has been solved using two distinct approaches: Optimization techniques and heuristics methods. Mathematical optimization procedures have been developed to produce optimal solutions, but they are only applicable for small-size problems. Artificial intelligent techniques have been used practically to handle real-life problems. On the other hand, heuristic methods have been used to produce good but not optimal solutions for large problems. In this paper, an optimization model has been developed for solving the site layout planning problem considering safety and environmental issues and actual distance between facilities. Genetic algorithms are used as an optimization bed for the developed model. In order to validate the performance of the developed model, a real-life construction project was tested. The obtained results proved that satisfactory solutions were obtained.  相似文献   

5.
Dynamic site layout planning requires identifying and updating the positions of all temporary construction facilities such as offices, storage areas, and workshops over the entire project duration. Existing models do not guarantee global optimal solutions because they focus on optimizing the planning and layout of successive construction stages in a chronological order, without considering the future implications of layout decisions made in early stages. This paper presents the development of an approximate dynamic programming model that is capable of searching for and identifying global optimal dynamic site layout plans. The model applies the concepts of approximate dynamic programming to estimate the future effects of layout decisions in early stages on future decisions in later stages. The model is developed in three main phases: (1) formulating the decision variables, geometric constraints, and objective function of the dynamic site layout planning problem; (2) modeling the problem using approximate dynamic programming; and (3) implementing and evaluating the performance of the model. An evaluation example is analyzed to illustrate the use of the model and demonstrate its capabilities in generating global optimal solution for dynamic site layout planning of construction projects.  相似文献   

6.
This paper presents an investigation of the applicability of a genetic approach for solving the construction site layout problem. This problem involves coordinating the use of limited site space to accommodate temporary facilities so that transportation cost of materials is minimized. The layout problem considered in this paper is characterized by affinity weights used to model transportation costs between facilities and by geometric constraints that limit their relative positions on site. The proposed genetic algorithm generates an initial population of layouts through a sequence of mutation operations and evolves the layouts of this population through a sequence of genetic operations aiming at finding an optimal layout. The paper concludes with examples illustrating the strength and limitations of the proposed algorithm in the cases of (1) loosely versus tightly constrained layouts with equal levels of interaction between facilities; (2) loosely versus tightly packed layouts with variable levels of interactions between facilities; and (3) loosely versus tightly constrained layouts. In most problems considered where the total-objects-to-site-area ratio did not exceed 60%, the algorithm returned close to optimal solutions in a reasonable time.  相似文献   

7.
Efficient planning of materials procurement and storage on construction sites can lead to significant improvements in construction productivity and project profitability. Existing research studies focus on material procurement and storage layout as two separate planning tasks without considering their critical and mutual interdependencies. This paper presents the development of a new optimization model for construction logistics planning that is capable of simultaneously integrating and optimizing the critical planning decisions of material procurement and material storage on construction sites. The model utilizes genetic algorithms to minimize construction logistics costs that cover material ordering, financing, stock-out, and layout costs. The model incorporates newly developed algorithms to estimate the impact of potential material shortages on-site because of late delivery on project delays and stock-out costs. An application example is analyzed to demonstrate the capabilities of the construction logistics planning model in simultaneously optimizing material procurement decisions and storage layout plans.  相似文献   

8.
Four-dimensional (4D) models link three-dimensional geometrical models with construction schedule data. The visual link between the schedule and construction site conditions is capable of facilitating decision making during both the planning and construction stages. The emphases of these 4D developments have often been placed at the level of construction components. Practical features assisting site management are at times lacking in the following areas: (1) generation of site usage layouts; (2) estimation of quantities of construction materials; and (3) cost evaluation. In order to pinpoint these deficiencies, the objective of this work is to enable visual study of the effects of job progress on the logistics and resource schedules. This paper presents a 4D visualization model that is intended both to help construction managers plan day-to-day activities more efficiently in a broader and more practical site management context and to thereby add to our knowledge and understanding of the relevance of modern computer graphics to the responsibilities of the construction site manager. A brief site trial of the software is described at the conclusion of the paper.  相似文献   

9.
Layout of temporary construction facilities (objects) is an important activity during the planning process of construction projects. The construction area layout is a complex problem whose solution requires the use of analytical models. Existing popular models employ genetic algorithms that have proven to be useful tools in generating near optimal site layouts. This paper presents an alternative approach based on mathematical optimization that offers several important features and generates a global optimal solution. The construction area consists of an unavailable area that includes existing facilities (sites) and available area in which the objects can be located. The available area is divided into regions that are formulated using binary variables. The locations of the objects are determined by optimizing an objective function subject to a variety of physical and functional constraints. The objective function minimizes the total weighted distance between the objects and the sites as well as among the objects (if desired). The distance can be expressed as Euclidean or Manhattan distance. Constraints that ensure objects do not overlap are developed. The new approach, which considers a continuous space in locating the objects simultaneously, offers such capabilities as accommodating object adjacency constraints, facility proximity constraints, object–region constraints, flexible orientation of objects, visibility constraints, and nonrectangular objects, regions, and construction areas. Application of the model is illustrated using two examples involving single and multiple objects. The proposed model is efficient and easy to apply, and as such should be of interest to construction engineers and practitioners.  相似文献   

10.
Layout of temporary facilities on a construction site is essential to enhancing productivity and safety, and is a complex issue due to the unique nature of construction. This paper proposes a particle swarm optimization (PSO)-based methodology to solve the construction site unequal-area facility layout problem. A priority-based particle representation of the candidate solutions to the layout problem is proposed. The particle-represented solution in terms of priorities should be transformed to the specific layout plan with consideration of nonoverlap and geometric constraints. In addition, a modified solution space boundary handling approach is proposed for controlling particle updating with regard to the priority value range. Computational experiments are carried out to justify the efficiency of the proposed method and investigate its underlying performances. This study aims at providing an alternative and effective means for solving the construction site unequal-area layout problem by utilizing the PSO algorithm.  相似文献   

11.
This paper presents an interactive computer-aided site layout model to support site planning in a computer-aided design (CAD) environment and expands upon a model presented earlier by the writers. The developed model performs its task at two levels: Site representation, and site space analysis and allocation. The site representation is carried out using an open architecture supported by object-based concepts. The model offers three tiers of objects: (1) site objects, (2) construction objects, and (3) constraint objects. This structure facilitates the creation of new objects and reuse of domain knowledge, which allows for the gradual expansion and enrichment of the model’s knowledge base. At the space analysis and allocation level, the model introduces a geometric reasoning approach to analyze site space for finding an optimum or near-optimum location for facilities. This feature facilitates easy visualization of the site planning process and encourages user participation. The model is structured in three main modules: Database, Project Module, and Layout Control Module. The functionality of each module, along with their interconnectivity is described. The model is implemented using Visual Basic for Applications in AutoCAD environment and Microsoft Access. A numerical example of an actual site layout is presented to illustrate the functionality of the developed model.  相似文献   

12.
Dynamic Layout Planning Using a Hybrid Incremental Solution Method   总被引:1,自引:0,他引:1  
Efficiently using site space to accommodate resources throughout the duration of a construction project is a critical problem. It is termed the “dynamic layout planning” problem. Solving it involves creating a sequence of layouts that span the entire project duration, given resources, the timing of their presence on site, their changing demand for space over time, constraints on their location, and costs for their relocation. A dynamic layout construction procedure is presented here. Construction resources, represented as rectangles, are subjected to two-dimensional geometric constraints on relative locations. The objective is to allow site space to all resources so that no spatial conflicts arise, while keeping distance-based adjacency and relocation costs minimal. The solution is constructed stepwise for consecutive time frames. For each resource, selected heuristically one at a time, constraint satisfaction is used to compute sets of feasible positions. Subsequently, a linear program is solved to find the optimal position for each resource so as to minimize all costs. The resulting sequence of layouts is suboptimal in terms of the stated global objective, but the algorithm helps the layout planner explore better alternative solutions.  相似文献   

13.
An optimal construction site layout planning (CSLP) is vital for project management. It can reduce the transportation flows and thus the costs of a project. Genetic algorithm (GA) is the most used algorithm to solve site layout problems, but randomly generated initial population in GA will decrease solution quality. Max-min ant system (MMAS) can offer a better initial population than the randomly generated initial population at the beginning of GA. In this study, a modified GA (MMAS-GA) formed by conjoining MMAS to the step of initialization of GA is proposed to solve CSLP problems. In order to reveal the computational capability of MMAS-GA to solve CSLP problems, the results of MMAS-GA and traditional GA are compared by solving an equal-area CSLP problem. The results showed that the proposed MMAS-GA algorithm provided a better optimal solution under the objective function of minimizing the transportation flows between the site facilities. The proposed MMAS-GA algorithm could assist project managers and planners to design optimal construction site layout, and thus to reduce construction costs.  相似文献   

14.
Time–cost optimization (TCO) is one of the greatest challenges in construction project planning and control, since the optimization of either time or cost, would usually be at the expense of the other. Although the TCO problem has been extensively examined, many research studies only focused on minimizing the total cost for an early completion. This does not necessarily convey any reward to the contractor. However, with the increasing popularity of alternative project delivery systems, clients and contractors are more concerned about the combined benefits and opportunities of early completion as well as cost savings. In this paper, a genetic algorithms (GAs)-driven multiobjective model for TCO is proposed. The model integrates the adaptive weight to balance the priority of each objective according to the performance of the previous “generation.” In addition, the model incorporates Pareto ranking as a selection criterion and the niche formation techniques to improve popularity diversity. Based on the proposed framework, a prototype system has been developed in Microsoft Project for testing with a medium-sized project. The results indicate that greater robustness can be attained by the introduction of adaptive weight approach, Pareto ranking, and niche formation to the GA-based multiobjective TCO model.  相似文献   

15.
Large scale earthmoving operations require the use of heavy and costly construction equipment. Optimum utilization of equipment is a crucial task for the project management team. It can result in substantial savings in both time and cost of earthmoving operations. This paper presents optimization model for earthmoving operations in heavy civil engineering projects. The developed model is designed to assist general contractor in optimizing planning of earthmoving operations. The model utilizes genetic algorithm, linear programming, and geographic information systems to support its management functions. The model assists in planning earthmoving operations; taking into consideration: (1) availability of resources to contractors; (2) project budget and/or time constraints, if any; (3) scope of work; (4) construction site conditions; (5) soil type; (6) project indirect cost; and (7) equipment characteristics. The model also determines the quantities of earth to be moved from different borrow pits and those to be placed at different landfill sites to meet optimization objective set by the user and to meet project constraints. The model has been implemented in prototype software, using object-oriented programming. Two numerical example projects are presented to validate and demonstrate the use of the developed model in optimizing earthmoving operations.  相似文献   

16.
The use of modular construction has gained wide acceptance in the industry. For a specific construction facility layout problem such as site precast standardized modular units, it requires the establishment of an on-site precast yard. Arranging the precast facilities within a construction site presents real challenge to site management. This complex task is further augmented with the involvement of several resources and different transport costs. A genetic algorithm (GA) model was developed for the search of a near-optimal layout solution. Another approach using mixed-integer programming (MIP) has been developed to generate optimal facility layout. These two approaches are applied to solve with an example in this paper to demonstrate that the solution quality of MIP outperforms that of GA. Further, another scenario with additional location constraints can also be solved readily by MIP, which, however, if modeled by GA, the solution process would be complicated. The study has highlighted that MIP can perform better than GA in site facility layout problems in which the site facilities and locations can be represented by a set of integer variables.  相似文献   

17.
EvoSite: Evolution-Based Model for Site Layout Planning   总被引:1,自引:0,他引:1  
Appropriate site layout of temporary facilities is crucial for enhancing the productivity and safety on construction sites. Site layout planning, however, is a complex problem, and researchers have attempted to solve it using a variety of optimization-based and heuristic-based techniques. In this paper, a genetic-algorithm-based model for site layout planning is presented. The advantages of the model stem from three main characteristics: (1) It applies to any user-defined site shape; (2) it accounts for the user preference in the relative closeness among the facilities; and (3) it incorporates a genetic algorithm procedure to search for the optimum layout in a manner that simulates natural evolution. Based on the proposed model, a comprehensive system for site layout planning (EvoSite) is developed. EvoSite uses an intuitive spreadsheet representation of the site and the facilities, and automates the evolution of layout solutions. Details of model development and implementation are described, and an example application is presented to demonstrate the capabilities of the EvoSite system. The advantages, limitations, and future extensions of EvoSite are then discussed.  相似文献   

18.
Many construction planning problems require optimizing multiple and conflicting project objectives such as minimizing construction time and cost while maximizing safety, quality, and sustainability. To enable the optimization of these construction problems, a number of research studies focused on developing multiobjective optimization algorithms (MOAs). The robustness of these algorithms needs further research to ensure an efficient and effective optimization of large-scale real-life construction problems. This paper presents a review of current research efforts in the field of construction multiobjective optimization and two case studies that illustrate methods for enhancing the robustness of MOAs. The first case study utilizes a multiobjective genetic algorithm (MOGA) and an analytical optimization algorithm to optimize the planning of postdisaster temporary housing projects. The second case study utilizes a MOGA and parallel computing to optimize the planning of construction resource utilization in large-scale infrastructure projects. The paper also presents practical recommendations based on the main findings of the analyzed case studies to enhance the robustness of multiobjective optimization in construction engineering and management.  相似文献   

19.
Site layout planning can affect productivity and is crucial to project success. However, as construction is heterogeneous in the nature of its organizations, project designs, time constraints, environmental effects, etc., site layout planning for each project becomes unique. Affected by many uncertainties (variables) and variations, site layout planning is a typical multiobjective problem. To facilitate the decision-making process for these problems, a nonstructural fuzzy decision support system (NSFDSS) is proposed. NSFDSS integrates both experts’ judgment and computer decision modeling, making it suitable for the appraisal of complicated construction problems. The system allows assessments based on pairwise comparisons of alternatives using semantic operators that can provide a reliable assessment result even under the condition of insufficient precise information.  相似文献   

20.
The interactive, complicated system environment of a construction site renders conventional site layout planning and scheduling techniques to be inadequate in coping with materials handling system design in construction. In this paper, we present a university-industry joint endeavor for improving the effectiveness of the materials handling system on a precast viaduct construction project in Hong Kong by implementing the simplified discrete-event simulation approach (SDESA) along with its computer platform resulting from recent research. How to apply the simulation methodology of SDESA is elaborated step by step. Particular emphasis is placed on procedures of establishing a simulation model, validation of the simulation model, design of simulation experiments, and analysis of simulation results. With process flowchart, site layout plan, and process animation produced in a view-centric simulation environment, it is straightforward to establish, validate, and communicate the operations simulation. The research team convinced the project director, as well as field managers, of the functionality and effectiveness of operations simulation. The knowledge derived from simulation added to experiences of site managers in materials handling system design. With the aid of simulation, even junior engineers would be capable and confident to draw up an actionable construction plan that would lead to enhancement of cost effectiveness and productivity in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号