首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An increase in the number of distressed bridges and the limited financial resources emphasize the need for an efficient bridge management system (BMS) for India. Assessment of the remaining life of bridges becomes an essential step in BMS, which involves modeling of complex deterioration mechanisms in concrete due to chemical attacks, such as carbonation, chloride, sulfate, and so on. Lack of information on material properties used in bridge construction, construction techniques, exposure condition, and maintenance quality adopted make the remaining life assessment of bridges more complicated. Therefore, a parametric study has been carried out to understand the deterioration of concrete bridges due to carbonation. Effect of carbonation on the initiation and propagation time of corrosion was also included in the study. Based on the study, modifications are suggested in the clauses of Indian concrete bridge design standard IRC: 21 (2000) so as to enhance the service life of bridges.  相似文献   

2.
Structural repair and strengthening have long been dynamic and challenging activities in construction work. One of the most commonly used methods for such repairs is the application of fiber-reinforced polymer (FRP) sheets to strengthen RC or even steel structure members. A major issue of concern in flexural strengthening of RC beams with FRP laminates is the debonding of the concrete substrate, which leads to premature failure of the structural member thus strengthened. One reason for this premature rupture may be the lack of proper preparation of the concrete surface in contact with the FRP sheet. Surface preparation is typically associated with such constraints as adverse environmental impacts, economic losses due to stoppage of activities, repair costs, or even inaccessibility of the member(s) to be strengthened. This study aims to investigate surface preparation for application of FRP sheets in an attempt to develop substitute methods for conventional surface preparation methods. The experimental specimens used for the purposes of this study included a minimum of 100 prism specimens of dimensions 100×100×500?mm subjected to four-point flexural loading. The specimens were divided into the two control and experimental groups. The control group lacked FRP sheets, while the experimental one had FRP sheets tested for their ultimate failure strength as a result of both surface preparation and transverse, longitudinal, and diagonal grooves as substitutes for surface preparation. The results indicated that surface preparation prior to bonding of FRP sheets increased ultimate rupture strength. It was also found that the substitute preparation methods greatly compensated for the lack of conventional surface preparation such that they changed, in some cases, the ultimate failure behavior of the member.  相似文献   

3.
Large numbers of conventionally reinforced concrete (CRC) bridges in the national bridge inventory built during the 1950s are lightly reinforced for shear. Inspections revealed many of these bridges exhibit diagonal cracks resulting in load postings, monitoring, emergency shoring, repairs, and unscheduled bridge replacements. A research program was conducted to investigate the behavior and capacity of CRC bridge girders with vintage details. Laboratory tests of large-size girders representative of 1950s design and construction practice were carried out. Various steel reinforcement configurations were tested. Loading conditions were varied to reproduce girder behavior at different positions in a bridge and various loading protocols were considered. Test results provide a comprehensive data set for comparison of analysis methods and repair strategies; and indicated that anchorage of flexural steel was key to developing higher ultimate capacity, initial crack damage may not necessarily contribute to the final failure mode, and crack width alone may not indicate the level of damage to the beam.  相似文献   

4.
The lack of safety of deck slabs in bridges generally causes frequent repair and strengthening. The repair induces great loss of economy, not only due to direct cost by repair, but also due to stopping the public use of such structures during repair. The major reason for this frequent repair is mainly due to the lack of a realistic and accurate assessment system for bridge decks. The purpose of the present paper is therefore to develop a realistic assessment system which can estimate reasonably the safety, as well as the service life of concrete bridge decks, based on the deterioration models that are derived from both the traffic loads and environmental effect. A deterioration model due to chloride ingress is first established. The damage models due to repetitive traffic loads considering the dry and wet conditions of deck slabs are proposed. These models are used to calculate the remaining life of a bridge deck slab. A prediction method for service life of deck slab due to loading and environmental effects is developed based on material, as well as structural evaluation. The proposed method includes the assessment of corrosion in material level, and the analyses of flexure, shear, and fatigue in structural level. Finally, an assessment system for prediction of safety and remaining service life is developed based on the theories established in this study. The developed assessment system will allow the correct diagnosis of damage state and the realistic prediction of service life of concrete decks in girder bridges.  相似文献   

5.
6.
Strength Evaluation of Deteriorated RC Bridge Columns   总被引:1,自引:0,他引:1  
Condition-rating methods followed by load rating calculations are used for evaluating existing bridges in the United States. Ratings are assessed visually based on engineering expertise and experience, and in some cases supplemented by nondestructive tests. Good understanding of the effects of deterioration on the structural performance leads to better inspection procedures, planning, and cost-effective rehabilitation methods. This paper presents a bridge pier column strength evaluation method that can be adapted into a currently used bridge condition evaluation method. This method uses damaged material properties, and accounts for amount of corrosion and exposed bar length for each reinforcement, concrete loss, bond failure, and type of stresses in the corroding reinforcement. The proposed evaluation method provides a good estimate of the condition and load-carrying capacity of bridge piers that currently cannot be obtained by normal visual surveys. In addition, the proposed evaluation approach will help reduce repair costs, avoid overconservative condition ratings, and result in a more uniform level of safety of concrete bridge substructure in the United States.  相似文献   

7.
Knowing the ability of reinforced concrete (RC) bridges to withstand future seismic demands during their life-cycle can help bridge owners make rational decisions regarding optimal allocation of resources for maintenance, repair, and/or rehabilitation of bridge systems. The accuracy of a reliability assessment can be improved by incorporating information about the current aging and deterioration conditions of a bridge. Nondestructive testing (NDT) can be used to evaluate the actual conditions of a bridge, avoiding the use of deterioration models that bring additional uncertainties in the reliability assessment. This paper develops probabilistic deformation and shear capacity models for RC bridge columns that incorporate information obtained from NDT. The proposed models can be used when the flexural stiffness decays nonuniformly over a column height. The flexural stiffness of a column is estimated based on measured acceleration responses using a system identification method and the damage index method. As an application of the proposed models, a case study assesses the fragility (the conditional probability of attaining or exceeding a specified capacity level) of the column in the Lavic Road Overcrossing for a given deformation or shear demand. This two-span concrete box-girder bridge located in Southern California was subject to the Hector Mine Earthquake in 1999. Pre- and postearthquake estimates of the univariate shear and deformation fragilities and of the bivariate shear-deformation fragility are computed and compared. Both displacement and shear capacities are found to decrease after the earthquake event. Additionally, the results show that the damage due to the Hector Mine Earthquake has a larger impact on the shear capacity than the deformation capacity, leading to a more significant increment in the shear fragility than in the deformation fragility.  相似文献   

8.
The construction boom over the last century has resulted in a mature infrastructure network in developed countries. Lately, the issue of maintenance and repair/upgrading of existing structures has become a major issue, particularly in the area of bridges. Fiber- reinforced polymer (FRP) has shown great promise as a state-of-the-art material in flexural and shear strengthening as external reinforcement, but information on its applicability in torsional strengthening is limited. The need for torsional strengthening in bridge box girders is highlighted by the Westgate Bridge in Melbourne, Australia, one of the largest strengthening projects in the world for externally bonded carbon FRP (CFRP) laminates. This paper reports the experimental work in an overall investigation of torsional strengthening of solid and box-section reinforced concrete beams with externally bonded carbon FRP. This was found to be a viable method of torsional strengthening. Photogrammetry was a noncontact measuring technique used in the investigation. The deformation mechanisms were found to be unchanged in the strengthened specimens. Furthermore, it was found that the crack widths were reduced and aggregate interlocking action improved with the strengthened beams.  相似文献   

9.
Terrazzo installation is often perceived as an art, left to individual contractors and craftsmen to implement tried-and-true application and repair methods. In this context, architects and engineers often relegate themselves to a minimal supervisory role during construction and planning. The writers have found several recurring instances of terrazzo cracking problems during construction as well as deterioration that could be prevented or minimized with attention to the responsibilities of all parties to communicate throughout the design process. Causes are often related to shrinkage of terrazzo, concentrated stresses attributable to configuration of divider strips, and impact loads. To objectively minimize deterioration rates of terrazzo, an experimental program was initiated to evaluate performance. Testing consisted of compressive strength and linear shrinkage tests on cementitious terrazzo under varying curing conditions and a durability test that applied a cyclic gravity wheel load to gaps at the edge of terrazzo tiles. The latter test used metal wheels and considered parameters of material type, gap size between terrazzo edge and adjacent steel plate, wheel diameter, vertical offset of tile, and vertical load being applied. Results indicated that proper curing of cementitious terrazzo is critical to achieving compressive strength and minimizing early shrinkage. For the durability test performed, epoxy terrazzo exhibited significantly less deterioration. Durability of terrazzo is affected primarily by gap size, upward vertical offset, and weight applied. Small wheel size and direction of loading can also contribute to deterioration. It is important that architects, engineers, and contractors understand methods that ensure material properties, minimize stress concentrations, and use appropriate divider strip spacing to minimize deterioration attributable to cracking and impact load. These steps will ensure the visual appearance and durability expected by the project team.  相似文献   

10.
The goal of this study was twofold: (1) To demonstrate that engineered heat straightening is a viable alternative for the repair of damaged steel bridge girders; and (2) to illustrate how the latest results of research and development can be implemented for heat-straightening repairs. The bridge chosen for repair crosses over I-10 in Louisiana, just east of Lake Charles. Working with personnel from the Louisiana Department of Transportation and Development, the bridge was repaired during August 1998. A fascia noncomposite beam had been impacted, and the bottom flange was displaced 0.43 m (17 in.). The repair was designed by the writers and implemented in conjunction with Louisiana Department of Transportation and Development personnel. Described in this paper are the design of the repair, including assessment of damage, selection of heating patterns, development of jacking restraint locations and magnitudes, and heating sequences; the step-by-step implementation; a cost comparison; and a discussion of lessons learned. It is concluded that heat straightening is an effective alternative for repairing damaged steel bridges, when implemented with proper engineering design.  相似文献   

11.
12.
The short and long-term results of traditional and tension-free inguinal hernia repairs have been assessed in three surgical units. In order to standardise the results, hernias were classified according with Nyhus. There were 109 type I, 311 type II, 854 type III, and 125 type IV hernias. Follow-up was possible in 1201 patients (1249 hernia repairs). Postoperative course, postoperative pain, and recurrences were analysed. Recurrences ranged from 0.7% up to 9.3%. The tension-free methods of repair provided the most important advantages in term of low recurrence rate and early return to work even if, in our series, recurrences resulted mainly related to the type of hernia than to the type of repair. The Authors conclude that any hernia repair should be sized to the type of hernia defect in order to avoid over-treatment and abusive placing of a foreign body such as polypropylene mesh.  相似文献   

13.
The major parameter controlling the effectiveness of penetrating sealants as a means of protecting concrete bridge deck surface is the depth of penetration. The factors affecting the depth of sealant penetration are identified both through a fundamental approach and with reference to the literature on penetrating sealants, concrete deterioration, durability, and permeability. Penetration properties and the use of silane and siloxane as concrete surface sealers are discussed. The effects of surface cleaning methods and the drying period are discussed. Penetrating sealants are effective if proper surface cleaning and application procedures are employed. However, moisture state within the first 6-mm depth controls the depth of sealant penetration. Thus, the factors that affect the drying period before sealant application are identified. Penetrating sealants selection procedure incorporating available test methods is outlined based on the knowledge gained through the fundamental studies of flow phenomenon and literature.  相似文献   

14.
This paper presents the development of a project-level decision support tool for ranking maintenance scenarios for concrete bridge decks deteriorated as a result of chloride-induced corrosion. The approach is based on a mechanistic deterioration model and a probabilistic life-cycle cost analysis. The analysis includes agency and user costs of alternative maintenance scenarios and considers uncertainties in the agency cost and the corrosion rate in the deterioration model. The tool presented in this paper can be used to find the optimal condition index of a given bridge deck that minimizes life-cycle cost. Based on the results obtained on three existing bridge decks, it is shown that the total life-cycle cost (user cost plus agency cost) is a nonlinear function of the maximum tolerable condition of the deck, Sm, and that for a practical range of Sm, the relationship between total life-cycle cost and Sm is convex.  相似文献   

15.
Continuous reinforced concrete slab bridges rely on reinforcing steel bars near the top of the deck over the piers to carry negative moment. Transfer of forces in these bars may be jeopardized by deterioration and repair procedures that involve variable depth removal of deteriorated concrete around the bars. Partial or full loss of continuity could overstress the bottom reinforcement. Truckload testing of three bridges with various levels of damage was conducted before, during, and after repair in an attempt to quantify the level of loss of continuity and to examine the effectiveness of repair in terms of increasing the load transfer and enhancing the overall stiffness. Test results show loss of stiffness during repair but increased stiffness after completion of repair. The continuity was found to be lost during repair, and the slab dead load positive moments may be increased by as much as 50%. After repair, the continuity was restored, and the live-load distribution was essentially unaltered. For the test bridges, the redistribution of dead-load moment to the positive-moment zones did not appreciably affect the overall bridge rating factor. The amount of moment redistribution may be controlled through planning of repair steps.  相似文献   

16.
This report demonstrates how short-term field monitoring can be used to evaluate bridges when problems occur. A portable strain monitoring system with software has been used to study four different bridges. Studies to determine load-carrying capacities, causes of cracking, and load distributions are included. The work demonstrates that analytical predictions of stress∕strain levels, load distributions, and fatigue estimations are conservative. Analytical models based on conservative assumptions are suitable for the design of new bridges, but when problems occur in existing bridges, field testing combined with careful analysis can provide much more accurate answers to assist engineers on proper courses of action for repair. The field monitoring reported in this study has resulted in substantial savings in the cost and time needed in renovation and∕or repairs.  相似文献   

17.
Safety of a highway infrastructure system depends very much on the proper maintenance of bridges. The level of required maintenance is, typically, determined through a series of regular field inspections with the guidance of safety–economy trade-off. In Turkey, bridge maintenance, repair, and rehabilitation are currently performed on an as-needed basis. Time-dependent reliability analysis cannot be utilized for Turkish bridges for the time being since the majority of the bridges are either not regularly inspected or not inspected at all. The purpose of this paper is to propose a simple method to assess the remaining service life of a bridge by defining a relationship between its current condition rating and its age by evaluating a set of bridges at different ages. In a case study, 28 bridges were inspected for the first time to assess the average life expectancy. The average life of a bridge was predicted to be 80?years, and for this set of bridges, the main body components were found to deteriorate more than earth retaining and serviceability components.  相似文献   

18.
Predicted and Measured Response of an Integral Abutment Bridge   总被引:1,自引:0,他引:1  
This project examined several uncertainties of integral abutment bridge design and analysis through field-monitoring of an integral abutment bridge and three levels of numerical modeling. Field monitoring data from a Pennsylvania bridge site was used to refine the numerical models that were then used to predict the integral abutment bridge behavior of other Pennsylvania bridges of similar construction. The instrumented bridge was monitored with 64 gages; monitoring pile strains, soil pressure behind abutments, abutment displacement, abutment rotation, girder rotation, and girder strains during construction and continuously thereafter. Three levels of numerical analysis were performed in order to evaluate prediction methods of bridge behavior. The analysis levels included laterally loaded pile models using commercially available software, two-dimensional (2D) single bent models, and 3D finite element models. In addition, a weather station was constructed within the immediate vicinity of the monitored bridge to capture environmental information including ambient air temperature, solar radiation, wind speed and direction, humidity, rainfall, and barometric pressure. Laterally loaded pile models confirmed that inclusion of multilinear soil springs created from p-y curves is a valid approach for modeling soil–pile interaction within a finite element program. The 2D and 3D numerical models verified the field data indicating that primary accommodation of superstructure expansion and contraction is through rotation of the abutment about its base rather than longitudinal translation, as assumed in the original design of this bridge. Girder axial forces were suspected to be influenced by creep and shrinkage effects in the bridge superstructure. Pile strains were found to be well below strains corresponding to pile plastic moment. Overall, the 2D numerical model and the 3D numerical model predicted very similar behavior.  相似文献   

19.
Integral abutment bridges are often a preferred bridge type for moderate spans throughout the United States. However, design methods and construction details vary from state to state. Variations between states are noted in the methods employed to accommodate deformations in the piles. The significance of these differences was evaluated through a finite-element study. The effects of backfill properties and soil restraint on piles were evaluated with regard to bridge distortions and maximum moment realized in the piles. Results show that bridge expansion is predominantly affected by backfill conditions, whereas contraction is influenced by pile restraint conditions. Pile moments are minimized when denser backfill and lower pile restraint are provided. The influence of abutment soil-structure spring modeling assumptions is addressed. Models were calibrated to the reference bridge at Orange-Wendell, Mass, which has been instrumented and data collected for 4 years.  相似文献   

20.
Fiber-reinforced polymers (FRP) are becoming more widely used for repair and strengthening of conventionally reinforced concrete (RC) bridge members. Once repaired, the member may be exposed to millions of load cycles during its service life. The anticipated life of FRP repairs for shear strengthening of bridge members under repeated service loads is uncertain. Field and laboratory tests of FRP-repaired RC deck girders were performed to evaluate high-cycle fatigue behavior. An in-service 1950s vintage RC deck-girder bridge repaired with externally bonded carbon fiber laminates for shear strengthening was inspected and instrumented, and FRP strain data were collected under ambient traffic conditions. In addition, three full-size girder specimens repaired with bonded carbon fiber laminate for shear strengthening were tested in the laboratory under repeated loads and compared with two unfatigued specimens. Results indicated relatively small in situ FRP strains, laboratory fatigue loading produced localized debonding along the FRP termination locations at the stem-deck interface, and the fatigue loading did not significantly alter the ultimate shear capacity of the specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号