首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Little is known about productivity of smallholder maize–pigeonpea intercropping systems in sub-Saharan Africa. We conducted a survey of 277 farm households in Northern Tanzania to assess socio-economic factors, field management characteristics, and their association with productivity of maize–pigeonpea intercrops. On each farm, crop assessments were focused on a field that the farmer identified as most important for food supply. Variables associated with yields were evaluated using linear regression and regression classification. Biomass production ranged between 1.0 and 16.6 for maize, and between 0.2 and 11.9 t ha?1 for pigeonpea (at maize harvest). The corresponding grain yields ranged between 0.1 and 9.5 for maize, and between 0.1 and 2.1 t ha?1 for pigeonpea. Plant density at harvest, number of years the field had been cultivated, slope, weeding, soil fertility class, fertiliser and manure use were significantly associated with variation in maize grain yield, with interactions among the factors. Fields on flat and gentle slopes with plant density above 24,000 ha?1 had 28% extra yields when fertiliser was applied, while less than 24,000 plants ha?1 yielded 16% extra yield when manure was applied. Plant density at harvest was the key factor associated with pigeonpea yield; fields with densities above 24,000 plants ha?1 yielded an average of 1.4 t ha?1, while less than 24,000 plants ha?1 yielded 0.5 t ha?1. We conclude that performance of intercrops can be enhanced through application of organic and inorganic nutrient sources, and agronomic interventions including weeding, implementing soil conservation measures on steep slopes and optimising plant density.

  相似文献   

2.
Low agricultural productivity caused by soil degradation is a serious problem in the Ethiopian Highlands. Here, we report how differences in soil fertility management between farming systems, based either on enset (Ensete ventricosum) or on teff (Eragrostis tef) as the major crops, affect the extent of nutrient stocks, balances and ecosystem sustainability. We collected information on farmers’ resources and nutrient management practices from stratified randomly selected households in two watersheds in the Central Highlands of Ethiopia. In addition, we collected soil samples from each land use and calculated nutrient stocks, partial and full nutrient balances (N, P and K) for one cropping season. Our results show that farmers in the two farming systems manage their soils differently and that nutrient inputs were positively related to farmers’ wealth status. The watershed with the enset-based system had higher soil N and K stocks than the watershed with the teff-based system, while P stocks were not different. Management related N?and K fluxes were more negative in the teff-based system (?28 kg N ha?1 yr?1 and ?34 kg K ha?1 yr?1) than in the enset-based system (?6 kg N ha?1 yr?1 and ?14 kg K ha?1 yr?1) while P fluxes were almost neutral or slightly positive. Within the enset-based system, a strong redistribution of N, P and K took place from the meadows and cereals (negative balance) to enset (positive balances). Although in the teff-based system, N, P and K were redistributed from meadows, small cereals and pulses to maize, the latter still showed a negative nutrient balance. In contrast to nutrient balances at land use level, nutrient balances at the watershed scale masked contrasting areas within the system where nutrient oversupply and deficiencies occurred.  相似文献   

3.
Maize yield dynamics generally involve temporal changes, because increasing soil organic matter through manure application influences maize yields over the longer term, while inorganic nutrient application controls shorter term yields. These temporal soil properties and yield changes have been measured with long-term experiments. In sub-Saharan Africa (SSA), long-term experiments (more than 20 years) are rare due mainly to lack of funds. Farmers in the semi-arid northern Ethiopian Rift Valley (NERV) apply manure to maize fields in the long term. The relationships between the manure application levels, nutrient supply, soil nutrient levels, maize grain yields, and above-ground plant nutrient uptake levels were investigated by field measurement, interviews with farmers, laboratory analyses, and 2-years’ yield trials. The farmers applied on average 6.0 Mg ha?1 yr?1 of manure over 16.8 years on average. Significant linear or curve-linear correlations were found (1) between the annual nutrient supply and soil nutrient levels and (2) between the soil nutrient levels and maize productivities with minor exceptions. The regression equations determined from the yield trials proved 3.0 and 4.0 Mg ha?1 of maize yields can be expected when soil available N contents were 3.9 and 5.1 mg kg?1 in an ordinary rainfall year in NERV. For the farmers who apply 6.0 Mg ha?1 yr?1 manure, they are recommended to use 30 kg ha?1 yr?1 additional Urea to attain 3.0 Mg ha?1 maize yields. These types of assessment methods do not require much cost, and yet it can provide long-term scientific information in SSA.  相似文献   

4.
The long-term residual effects of K application rates and cultivars for preceding cotton (Gossypium hirsutum L.) on subsequent maize (Zea mays L.) and the influence of N rates applied to preceding cotton and to maize on the residual K effects were examined on maize under no-tillage in the United States. Two field experiments were conducted on a no-till Loring silt loam at Jackson, TN during 1995–2008 with N rates (90 and 179 kg ha?1) × K rates (28, 56, and 84 kg ha?1) and cotton cultivars (determinate and indeterminate) × K rates (56 and 112 kg ha?1) as the treatments, respectively, in the preceding cotton seasons. Maize was planted under no-tillage on the preceding cotton experiments without any K application during 2009 through 2011. The residual effects of K rates applied to preceding cotton on soil K levels were significantly influenced by the N rates applied to preceding cotton and to maize when the data were combined from 2008 to 2011. Relative to the standard N management practices of 168 kg N ha?1 for maize and 90 kg N ha?1 for preceding cotton, the higher N application rate 269 kg N ha?1 to maize and 179 kg N ha?1 to preceding cotton reduced the residual effects of K rates on soil K. However, cultivar for preceding cotton did not affect the residual effects of K fertilizer on soil K fertility, leaf K nutrition, plant growth, or grain yield of subsequent maize on a high K field.  相似文献   

5.
Restoring soil fertility in smallholder farming systems is essential to sustain crop production. An experiment was conducted in 2011 and 2012 to study the effect of compost and inorganic fertilizer application on soil chemical properties and wheat yield in northwest Ethiopia. Full factorial combinations of four levels of compost (0, 4, 6, 8 t ha?1) and three levels of inorganic fertilizers (0–0, 17.3–5, 34.5–10 kg N–P ha?1) were compared in a randomized complete block design with three replications. In 2012, two sets of trials were conducted: one was the repetition of the 2011 experiment on a new experimental plot and the second was a residual effect study conducted on the experimental plots of 2011. Results showed that in the year of application, applying 6 t compost ha?1 with 34.5–10 kg N–P ha?1 gave the highest significant grain yield. In the residual effect trial, 8 t compost ha?1 with 34.5–10 kg N–P ha?1 gave 271 % increase over the control. Grain protein content increased 21 and 16 % in the current and residual effect trials, respectively, when 8 t compost ha?1 was applied; it increased 11 and 14 % in the current and residual effect trials, respectively, when 34.5–10 kg N–P ha?1 was applied. Under the current and residual effects of 8 t compost ha?1, SOM increased 108 and 104 %; available P 162 and 173 %; exchangeable Ca 16.7 and 17.4 %; and CEC 15.4 and 17.1 %, respectively. Applying 6 t compost ha?1 with 34.5–10 kg N–P ha?1 is economically profitable with 844 % MRR.  相似文献   

6.
Drought stress, uncertain and variable rainfall, low soil quality and nutrient deficiencies are among principal constraints for enhancing and sustaining agronomic productivity in rainfed farming in semiarid tropical regions of India. Therefore, long-term (1985–2004) effects of cropping, fertilization, manuring (groundnut shells, GNS; farmyard manure, FYM) and integrated nutrient management practices were assessed on pod yields, nutrient status and balances for a groundnut (Arachis hypogaea) monocropping system. The five nutrient management treatments were: control (no fertilizer); 100 % recommended dose of fertilizer (RDF) (20:40:40 N, P, K); 50 % RDF + 4 Mg ha?1 GNS; 50 % RDF + 4 Mg ha?1 FYM and 100 % organic (5 Mg ha?1 FYM). All treatments were replicated four times. The experiment was conducted at Anantapur district, Andhra Pradesh on an Alfisol using a Randomized Complete Block design. The gap in pod yields between control and different nutrient treatments widened with increase in duration of cultivation. Use of diverse fertilizer and manurial treatments produced significantly higher yields than control (P < 0.05). Amount and distribution of rainfall during critical growth stages was more important to agronomic yield than total and seasonal rainfall. Thus, the amount of rainfall received during pegging stage (r = 0.47; P < 0.05) and pod formation stage (r = 0.50; P < 0.05) was significantly correlated with the mean pod yields. Whereas, use of diverse fertility management practices improved nutrient status in soil profiles (N, P, K, S, Ca, Mg, Zn, Fe, Mn and B) after 20 years of cropping, yet soil available N, K and B remained below the critical limits. Long-term cultivation also caused deficiency of S, Zn and B, which limited the groundnut productivity. Crop removal of N, P and K during 20 years of cultivation was more in 50 % RDF + 4 Mg ha?1 GNS at 523, 210 and 598 kg ha?1, respectively. With the exception of control, there was a positive nutrient balance of NPK in all other treatments. Higher positive balance of N and K were observed in 50 % RDF + 4 Mg ha?1 GNS (616 and 837 kg ha?1, respectively), and those of P in 100 % RDF (655 kg ha?1) treatment. There was also a net depletion of available S, Zn, Cu and Mn, but a buildup of available Ca, Mg and Fe. Application of equal amount of GNS was as effective as or even better than FYM in terms of pod yields and nutrient buildup in the soil.  相似文献   

7.
Tropical dry forests (TDFs) are being deforested at unprecedented rates. The slash/burn/agriculture/fallow-extensive livestock sequence causes significant nutrient losses and soil degradation. Our aim is to assess nutrient inputs and outputs in a TDF area under an alternative management system, for exclusive wood production. The study involved clear-cutting a preserved caatinga TDF site without burning, quantifying nutrients exported in firewood/timber and nutrients returned to the soil from the litter layer plus the slash debris, left to decompose unburned on the soil surface. Before clear-cut, the litter layer on the forest floor contained 6.1 t ha of dry matter (DM). After clear-cut, the aboveground biomass was 61.9 t DM ha?1 (consisting of 21.5 t DM ha?1 of commercial wood and 40.4 t DM ha?1 of clear-cut debris that did not include the underlying litter layer). The litter layer was composed of fine and coarse litter, with turnovers of 0.86 and 0.31 year?1, respectively, separately measured in uncut control plots during two rainy seasons (Dec-2007/June-2008 and Dec-2008/June-2009). In a single season, its decomposition returned to the soil 48.4, 1.16 and 12.3 kg ha?1 of N, P and K. The clear-cut debris was mainly composed of branches, 33.4 t ha?1, bromeliads, 5.63 t ha?1 and green leaves, 1.32 t ha?1. In-situ decomposition rates for branches and bromeliads were 0.24 and 1.47 year?1, respectively. After two rainy seasons the clear-cut debris released 206, 6.5 and 106 kg ha?1 of N, P and K respectively. This input plus that of the underlying litter layer exceeded exports in the commercial wood, and replenished a soil nutrient stock (0–30 cm) of approximately the same magnitude.  相似文献   

8.
The effects of green manure, crop sequence and off-farm composts on selected soil quality parameters were assessed in a three-year organic potato (Solanum tuberosum L.) rotation in Eastern Canada. Three crop sequences varying in preceding green manure [red clover (RCl) + RCl, and beans/buckwheat or carrots + oats/peas/vetch mixture (OPV)] as main plots and four fertility treatments applied in the potato phase only [control; inorganic fertilizer; municipal solid waste compost (MSW); composted paper mill biosolid (PMB)] as subplots were compared. In 2008 and 2010, changes in selected soil quality parameters (0–15 cm) were assessed prior to planting of potatoes and at potato tuber initiation stage. Potentially mineralizable nitrogen (N) and the acid phosphatase enzyme activity average values across years were greater following RCl (1.51 abs and 622 kg ha?1) compared with OPV (1.32 abs and 414 kg ha?1) at potato planting. Soil NO3–N average value was greater following RCl compared with OPV (63 vs. 52 kg ha?1) at tuber initiation. For the other measured parameters, OPV and RCl were similar. The soil organic carbon (C) and particulate organic matter-C were greater under PMB and MSW (31.1 and 7.57 kg ha?1) compared with fertilizer treatment (27.9 and 6.05 kg ha?1). The microbial biomass C and microbial biomass quotient were greater under MSW (216 kg ha?1 and 0.73 %) than PMB and fertilizer (147 kg ha?1 and 0.50 %) across crop rotations. Annual legume green manures and off-farm composts can be used to satisfy potato N requirement and maintains soil quality in organic potato rotations.  相似文献   

9.
A long-term field experiment in western Sydney evaluated the effect of source-separated green-waste (garden organics) compost on peri-urban vegetable crop yields and economic returns, compared to farmer practice. Comparisons were made over 10 vegetable crops between a compost (COMP) treatment (one off application of 125 dry t ha?1 of green waste compost at the start and then every five crops, supplemented with urea when required), a mixed (MIX) treatment (one-off compost application of 62.5 dry t ha?1 at start and then every five crops, but with inorganic NPK fertiliser inputs for each crop) and a conventional farmer practice (FP). Both COMP and MIX treatments consistently achieved similar or higher yields than FP, but the yield gains were more pronounced for COMP. COMP and MIX treatments delivered benefit–cost ratios of 3.3 and 2.6 respectively compared to FP over the 10 crops, indicating that this system could deliver economic benefits to growers as well as improve soil quality and the environment. Follow up large applications of compost generated more substantial yield increases in responsive vegetable crops and economic benefits. The substantial capsicum crop yield response provided a classic example of closing a crops ‘yield gap’ through improvements to soil quality with organic inputs, with implications for food security. The COMP treatment lifted the capsicum yield to?~?60 t ha?1, 50% above its perceived maximum potential crop yield for Eastern Australia. The value of larger applications of compost for soil quality, fertiliser savings, crop yield and farm income was apparent.  相似文献   

10.
Nitrogen (N) is the most limiting nutrient in crop production. Legumes such as red clover can provide N through biofixation, but securing nitrogen in soil for subsequent crop production must also be considered. Variety selection and management in red clover cropping can influence soil mineral nitrogen (SMN) availability. A field trial to investigate this was conducted with six varieties, under one and two cut management, over 2 years. Dry matter (DM) and N yield, Sclerotinia resistance and SMN availability were assessed. Low DM and N yields (1.6–2.4 t DM ha?1 and 54–83 kg N ha?1) in the first year of cultivation allowed ~?40 kg N ha?1 to become available, but high DM and N yields (10.2–14.6 t DM ha?1 and 405–544 kg N ha?1) allowed ~?20 kg N ha?1 to become available. Wetter weather in 2015 caused significantly more SMN losses than 2016 (20 kg N ha?1 in 2015 and 5 kg N ha?1 in 2016). The varieties Amos, Maro and Milvus lost significantly more SMN in the winter period, which may have been caused by more severe infection of Sclerotinia (these varieties were 50–80% more severely infected other varieties). Varietal effect was non-significant for winter losses in 2016, where no significant varietal differences in Sclerotinia infection were observed. 1 cut made ~?41 kg N ha?1 available in the growing season of 2015, whilst 2 cut made significantly less (37 kg N ha?1). Cutting was non-significant in 2016 but 1 cut was less susceptible to losses in the winter period. Cutting in 2015 did not significantly affect herbage DM and N yields in the first or second cut of 2016.  相似文献   

11.
Few studies have comprehensively evaluated the method of estimating the net ecosystem carbon budget (NECB). We compared two approaches for studying the NECB components on the crop seasonal scale as validated by the soil organic carbon (SOC) changes measured over the 5-year period of 2009–2014. The field trial was initiated with four integrated soil–crop system management (ISSM) practices at different nitrogen application rates relative to the local farmer’s practices (FP) rate, namely, N1 (25 % reduction), N2 (10 % reduction), N3 (FP rate) and N4 (25 % increase) with no nitrogen (NN) and FP as the controls. Compared with the FP, the four ISSM scenarios of N1, N2, N3 and N4 significantly increased rice yields by 9.5, 19, 33 and 41 %, while increasing the agronomic nitrogen use efficiency (NUE) by 71, 75, 99 and 79 %, respectively. The SOC sequestration potentials were estimated to be ?0.15 to 0.35 Mg C ha?1 year?1 from the net primary production minus heterotrophic respiration approach and ?0.32 to 0.67 Mg C ha?1 year?1 from the gross primary production minus ecosystem respiration approach for the 2010–2011 rice–wheat annual cycle. Similarly, the annual topsoil carbon sequestration rate over 2009–2014 was measured to be ?0.22 Mg C ha?1 year?1 for the NN plot and 0.13–0.42 Mg C ha?1 year?1 for the five fertilized treatments. Both NECB approaches provided a sound basis for accurate assessment of the SOC changes. Compared to the SOC sequestration rate from the FP, the proposed N3 and N4 scenarios increased the SOC sequestration rates while also improving rice yield and NUE.  相似文献   

12.
In the North China Plain, a field experiment was conducted to measure nitrous oxide (N2O) and methane (CH4) fluxes from a typical winter wheat–summer maize rotation system under five integrated agricultural management practices: conventional regime [excessive nitrogen (N) fertilization, flood irrigation, and rotary tillage before wheat sowing; CON], recommended regime 1 (balanced N fertilization, decreased irrigation, and deep plowing before wheat sowing; REC-1), recommended regime 2 (balanced N fertilization, decreased irrigation, and no tillage; REC-2), recommended regime 3 (controlled release N fertilizer, decreased irrigation, and no tillage; REC-3), and no N fertilizer (CK). Field measurements indicated that pulse emissions after N fertilization and irrigation contributed 19–49 % of annual N2O emissions. In contrast to CON (2.21 kg N2O-N ha?1 year?1), the other treatments resulted in significant declines in cumulative N2O emissions, which ranged from 0.96 to 1.76 kg N2O-N ha?1 year?1, indicating that the recommended practices (e.g., balanced N fertilization, controlled release N fertilizer, and decreased irrigation) offered substantial benefits for both sustaining grain yield and reducing N2O emissions. Emission factors of N fertilizer were 0.21, 0.22, 0.23, and 0.37 % under CON, REC-1, REC-3, and REC-2, respectively. Emissions of N2O during the freeze–thaw cycle period and the winter freezing period accounted for 9.7 and 5.1 % of the annual N2O budget, respectively. Thus, we recommend that the monitoring frequency should be increased during the freeze–thaw cycle period to obtain a proper estimate of total emissions. Annual CH4 fluxes from the soil were low (?1.54 to ?1.12 kg CH4-C ha?1 year?1), and N fertilizer application had no obvious effects on CH4 uptake. Values of global warming potential were predominantly determined by N2O emissions, which were 411 kg CO2-eq ha?1 year?1 in the CK and 694–982 kg CO2-eq ha?1 year?1 in the N fertilization regimes. When comprehensively considering grain yield, global warming potential intensity values in REC-1, REC-2, and REC-3 were significantly lower than in CON. Meanwhile, grain yield increased slightly under REC-1 and REC-3 compared to CON. Generally, REC-1 and REC-3 are recommended as promising management regimes to attain the dual objectives of sustaining grain yield and reducing greenhouse gas emissions in the North China Plain.  相似文献   

13.
The efficient use of water and nitrogen represents a primary concern to agricultural production in Northwest China. A 2-year field experiment was conducted to assess the separation of nitrogen (N) fertilizer and irrigation water with alternating furrow irrigation (SNWAFI) in a maize (Zea mays L.) production system. Irrigation water use efficiency and nitrogen use efficiency with SNWAFI were generally greater than with conventional irrigation and fertilization (CIF). Response surfaces indicated that maximum maize yields were obtained with 238 kg urea-N ha?1 and 106 mm irrigation water in 2008 and 244 kg urea-N ha?1 and 95 mm of irrigation water in 2009. When the predicted yields were highest (6,384 and 6,549 kg ha?1), water use efficiency, N uptake, and N use efficiency were greater with SNWAFI than CIF. Conversely, soil NO3–N change during maize growing season decreased with SNWAFI compared CIF. With SNWAFI, optimizing irrigation water and N fertilizer rates can maximize yield, save irrigation water, and reduce N leaching.  相似文献   

14.
Farmyard manure (FYM) is valuable for soil management, especially for soils with <?10 g kg?1 organic C in semi-arid West Africa. This study determined short-term FYM effects on yield and on response to N, P and K fertilizer for 20 trials in Niger and 28 trials in Burkina Faso involving six crops. The comparisons were of 0 and 2.5 Mg ha?1 yr?1 FYM applied in Niger, and of 0 and 5 Mg ha?1 FYM applied once in 2 years in Burkina Faso. Fertilizer and FYM application alone had little effect on yield in Niger but there was a synergistic effect of fertilizer P with FYM which included increased mean responses to P of, respectively: 0.22 and 0.43 Mg ha?1 for sorghum grain and fodder (Sorghum bicolor L.); 0.15 and 0.27 Mg ha?1 for cowpea grain and fodder; 0.16 Mg ha?1 grain for pearl millet (Pennisetum glaucum L.) when intercropped with cowpea (Vigna unguiculata L.); and 0.39 Mg ha?1 for groundnut fodder (Arachis hypogea L.). Application of FYM increased pearl millet response to N but decreased legume response to K fertilizer. In Burkina Faso, there was a mean grain yield increase of 0.29 Mg ha?1 yr?1 due to FYM and the effect of applying both FYM and fertilizer was additive except for a synergy of N fertilizer plus manure application for maize (Zea mays L.). Therefore, farmers should apply FYM and fertilizer together in Niger but these can be applied alone or together in Burkina Faso with mostly similar effects.  相似文献   

15.
A number of studies have recommended application of large quantities of manure alone or in combination with inorganic fertilizer in sub-Saharan Africa (SSA). However, yield responses of cereals such as maize are very modest even at manure application rates exceeding 10 t ha?1 year?1. We conducted a meta-analysis of data from 64 studies across 14 countries in SSA in order to explore variability in nutrient concentrations, stoichiometry and maize yield responses to animal manure. We observed novel instances of stoichiometry and correlations between organic carbon (C), total nitrogen (N), phosphorus (P) and potassium (K) concentrations, and elemental ratios in manure. In 27% of the manure samples the C:N ratio was greater than 25 indicating that N will be potentially unavailable to crops due to net immobilization. In over 94% of the manure samples, the N:P and C:P ratios were <15 and <200 indicating net P mineralization. Therefore, decomposition rates and crop responses are likely to be N-limited rather than P-limited in the majority of the manure applied. Our analyses also demonstrate that manure application rates and N and P concentrations are less important than C:N and N:P ratios in determining maize yield response to manure. Therefore, emphasis in the future should not be on increasing manure application rates but on approaches that ensure favourable C:N and N:P ratios. Our findings also suggest the need for feeding animals with high quality diet to get better quality manure, higher crop yields and improve household food security in SSA.  相似文献   

16.
A study of urea N rate and placement for irrigated maize (Zea mays L) grown in Somalia was conducted to investigate this most promising and rather easily adopted cultural practice, in order to sharply increase present low yields. This work was done at the Afgoi station of the Agricultural Research Institute on a calcareous Vertisol. Six different levels of N (0, 20, 40, 80, 160 and 320 kg N ha?1) as urea were used as main-plot treatments with four different placements as subplot treatments. Three of the placements consisted of broadcast-incorporated, broadcast-not incorporated, and sidedress on or in dry soil while the fourth placement was broadcast on wet soil. The grain yield response to added N was very highly significant and the regression analysis predicted a maximum yield of 7.6 t ha?1 from 210 kg N ha?1. A consistent yield depression occurred at the 320 kg N ha?1 rate in all placement treatments. Placement of urea on or in dry soil gave significantly higher yields than did placement on the wet soil. The data indicate that substantial N losses occurred on this soil when urea was broadcast on a wet surface. The economic analysis to determine the feasibility of applying N to maize grown under improved crop production practices showed that fertilization with N can be very profitable. At the existing price for urea and value of maize, the economic optimum occurred at 164 kg N ha?1 which gave a 2.1 t ha?1 grain yield increase. This increased yield from N fertilization produced a profit of 1010 Somali shillings (US $162) ha?1.  相似文献   

17.
Bean (Phaseolus vulgaris L.) is important in sub-Saharan Africa for human dietary protein. Low yields are attributed to biotic and abiotic constraints including inadequate nutrient availability. Research was conducted to determine nutrient response functions for bean production areas of Kenya, Mozambique, Rwanda, Tanzania, and Zambia. Mean trial yields ranged from 0.32 to 2.60 and 1.72 to 2.89 Mg ha?1 for bush and climbing bean, respectively. Response to N was common except in Kenya and Mozambique. The main effect of P and K increased yield in Rwanda only but P and K effects were inconsistent in Zambia. Mean yield increase with a diagnostic treatment containing Mg–S–Zn–B was 0.41 and 0.58 Mg ha?1 for bush and climbing bean, respectively, in Rwanda and 0.36 Mg ha?1 in Tanzania with no effects in other countries. In Rwanda, the economically optimal rates (EOR) of N, P and K were > 20 kg ha?1, but higher with less costly fertilizer. Variations in EOR for growth type varied with nutrient. The EOR of N in Tanzania and Zambia were generally < 10 kg ha?1, depending on fertilizer costs, but P and K application had profit potential only in Rwanda. Yield, agronomic efficiency and profit to cost ratio, averaged across nutrients, were 36% less, 54% greater and 96% greater, respectively, with nutrients applied at 50% compared with 100% of EOR. Profit potential for the EOR of N is high when expected yield is > 1.5 Mg ha?1 but responses to P, K and Mg–S–Zn–B vary with bean production area.  相似文献   

18.
In agro-ecosystems, the relationship between soil fertility and crop yield is mediated by manure application. In this study, an 8-year field experiment was performed with four fertilizer treatments (NPK, NPKM1, NPKM2, and NPKM3), where NPK refers to chemical fertilizer and M1, M2, and M3 refer to manure application rates of 15, 30, and 45 Mg ha?1 year?1, respectively. The results showed that the NPKM (NPKM1, NPKM2, and NPKM3) treatments produced greater and more stable yields (4.95–5.45 Mg ha?1 and 0.59–0.75) than the NPK treatment (4.01 Mg ha?1 and 0.50). Crop yields under the NPKM treatments showed two trends, with a rate of decrease of 0.48–0.83 Mg ha?1 year?1 during the first 4 years and a rate of increase of 0.10–0.25 Mg ha?1 year?1 during the last 4 years. The soil organic carbon (SOC) significantly increased under all treatments. The estimated annual SOC decomposition rate was 0.35 Mg ha?1 year?1 and the equilibrium SOC level was 6.22 Mg ha?1. Soil total nitrogen (N), available N, total phosphorus (P) and available P under the NPKM treatments increased by 0.15–0.26, 15–33, 0.17–0.66 and 45–159 g kg?1, respectively, compared with the NPK treatment. Manure application mainly influenced crop yield by affecting the soil TN, available N, and available P, which accounted for up to 64% of the crop yield variation. Taken together, applying manure can determine or at least improve the effects of soil fertility on crop yield in acidic soils in South China.  相似文献   

19.
Nitrogen is the largest input used by farmers, but they often apply excessive quantities of N fertilizer, causing nitrogen losses. In recent years, the management of large quantities of manure and slurry compounds has become a challenge. The aim of this study was to assess the usefulness of the proxy tools Yara N-tester? and RapidScan CS-45 for diagnosing the N nutritional status of wheat crops when farmyard manures were applied. Our second objective was to start designing a N fertilization strategy based on these measurements. To achieve these objectives, two field trials were established with three factors: growing season, three kinds of initial fertilizers [dairy slurry (40 t ha?1), sheep manure (40 t ha?1) and conventional (no organic fertilizer on basal dressing and 40 kg N ha?1 at tillering)] and five N mineral fertilization dose applied at stem elongation. The proxy tools for diagnosing the N nutritional status were used at stem elongation before applying the mineral N. Proxy tool readings as indicators of the nitrogen nutritional status of the field were as good as soil mineral nitrogen (Nmin) or Nitrogen Nutrition Index (NNI). When the readings were approximately 65% (as compared to an overfertilized control), the optimal N rate applied at stem elongation was slightly higher (10–20 kg N ha?1) than the readings at 88%. The first N topdressing at the beginning of tillering could be avoided when manure was applied before sowing, unfolding new possibilities for a later application that might improve the protein content with lower likely fertilization costs.  相似文献   

20.
Nitrogen (N) is an essential element for producing optimum crop yields, but negative responses to high N supply are commonly reported in sweetpotato (Ipomoea batatas) production. This study assessed contrasting responses of sweetpotato yield as a result of N application rates of 0, 30, 60, 90, 130, 160 and 230 kg ha?1 in a glasshouse trial, and rates of 0, 50, 100, 150, 200 and 250 kg ha?1, equivalent to 160, 210, 260, 310, 360 and 410 kg ha?1 when soil N supply is included. The glasshouse-grown sweetpotato produced a maximum number and dry-biomass of storage roots, aboveground biomass and leaf area at 130 kg N ha?1, while leaf N concentration peaked at 90 kg N ha?1. Further increasing N application to 230 kg ha?1 did not result in significant change in any of these attributes. In field-grown sweetpotato, leaf and storage root N concentrations increased with increasing N supply. Although N supply had no effect on the number of storage roots, total yield peaked at 260 kg ha?1. Further increase of N supply reduced the total yield by up to 14% of the maximum yield. With increasing N supply, the glasshouse-grown sweetpotato yield linearly increased with leaf area; the arrangement of the trial permitting light interception to exceed the pot surface area. The yield reduction in field-grown plants was attributed to excess growth of aboveground parts, beyond that needed for efficient light capture. Respirational demand of the aboveground growth occurred at the expense of storage root yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号