首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过在真空和氢气环境下的拉伸实验,研究了硼含量对有序态(Fe,Co)_3V合金力学性能和环境氢脆的影响。结果表明,当在有序态(Fe,Co)_3V合金中添加0.02%B(质量分数)时,相对于无硼合金,合金的晶粒尺寸减小了27.5%,合金在真空和氢气中的抗拉强度和延伸率均达到最大值;而当硼含量继续增加时,合金的晶粒尺寸、合金在真空和氢气中的力学性能均保持不变。无硼有序态(Fe,Co)_3V合金在氢气中呈现严重的环境氢脆,当在合金中添加0.02%B后,合金氢脆因子降低了34.4%,合金的断口形貌由完全沿晶断口转变为穿晶和沿晶的混合断口;当合金中的硼含量继续增加时,合金的氢脆因子不再降低,恒定在50%左右,即硼原子只能部分抑制有序态(Fe,Co)_3V合金在氢气中的环境氢脆。  相似文献   

2.
《Intermetallics》2005,13(3-4):289-294
Hydrogen induced environmental embrittlement of a Ni4Mo alloy in different degree of ordered conditions was investigated by tensile tests in various atmosphere. The results show that the disordered Ni4Mo alloy is not susceptible to embrittlement in hydrogen gas, but very susceptible to embrittlement in hydrogen charging. However, for the ordered Ni4Mo alloy, there is similar deterioration in ductility when the environment changes from oxygen to hydrogen gas and simultaneous hydrogen charging. It indicates that the atomic ordering does not influence the dynamic hydrogen charging-induced environmental embrittlement, but has a considerable effect on the gaseous hydrogen-induced environmental embrittlement. In addition, hydrogen absorption and desorption of the Ni4Mo alloy with disordered and ordered structures were also investigated using gas chromatographic analysis. The results show that the atomic ordering can promote gaseous hydrogen absorption at room temperature. This suggests that the atomic ordering accelerates the kinetics of the catalytic reaction for the dissociation of molecular hydrogen into atomic hydrogen due to the change of the outer layer electron structure and therefore exacerbates the hydrogen gas-induced environmental embrittlement.  相似文献   

3.
In the present study, fatigue tests were conducted on a zirconium-based bulk metallic glass (BMG), BMG-11 (Zr–10Al–5Ti–17.9Cu–14.6Ni, atomic percent), in air and vacuum to elucidate the possible environmental effects. In air, the fatigue endurance limit and the fatigue ratio were found to be 907 MPa and 0.53, respectively. These values are better than many conventional high-strength crystalline alloys. Unexpectedly, the fatigue lifetimes in vacuum were found to be lower than in air. Additional testing indicated that dissociation of residual water vapor to atomic hydrogen in the vacuum via a hot-tungsten-filament ionization gauge, and subsequent hydrogen embrittlement of the BMG-11, could have been a factor causing the lower fatigue lifetimes observed in vacuum.  相似文献   

4.
对Ni2Cr合金在不同环境气氛及动态渗氢中的脆化进行了系统研究,并从能量学方面分析了影响合金脆化的因素。结果表明,Ni2Cr合金在室温空气及氢气中不存在明显的环境氢脆,动态渗氢拉伸时Ni2Cr合金存在严重的氢脆敏感性,无序和高度有序合金脆化严重,部分有序合金氢脆敏感性较小。  相似文献   

5.
Hastelloy alloy B-42 weld overlay welding Alloy NiMo 28, Mat. No. 2.4617 (HASTELLOY alloy B-2), is known for its excellent corrosion resistance in hydrochloric and sulfuric acids over a wide range of concentrations and temperatures. Under critical conditions, however, severe corrosion can occur in welds (weld deposit and HAZ). This is attributed to molybdenum depletion of the microstructure. The properties of a filler material were investigated which contained an excessive amount of molybdenum over the parent alloy. This filler is called HASTELLOY alloy B-42, a nickel alloy having about 42% molybdenum. The much less ductile HASTELLOY alloy B-42 weld deposit is more corrosion resistant in hydrochloric and sulfuric acids than wrought HASTELLOY alloy B-2 and Hastelloyalloy B-2 filler. It can therefore be applied as weld overlay of HASTELLOY alloy B-2 welds subject to critical corrosion conditions. In field testing promising results were obtained. Currently only TIG rod having a diameter of not less than 4.76 mm (0.187”?) are available which are causing handling problems. Tube wire with a diameter of 2.5 mm (0.098”?) is under development and will be available shortly.  相似文献   

6.
Fe_3Al系合金环境氢脆研究SCIEI   总被引:7,自引:0,他引:7  
朱家红  万晓景 《金属学报》1994,30(3):139-144
研究了晶粒尺寸、形状、应变速率及预氧化对Fe_3Al系合金环境氢脆的影响,结果表明,细化晶粒能显著提高Fe_3Al合金在纯氧中的塑性及强度,但不能根本改善其环境氢脆敏感性;随着应变速率的提高,Fe_3Al合金在空气中的延伸率增加;Fe_3Al在空气及氢气中的脆化程度相似;预氧化能部分消除Fe_3(Al,Cr,B)合金的环境氢脆。实验结果可用表面化学反应是Fe_3Al材料环境致脆的控制步骤这一假设予以解释.  相似文献   

7.
Yield stress in compression (0.2% flow stress) from ambient temperature up to 800 °C has been studied on Ni3(Al, Si) alloy with the atomic composition Ni78Al11Si11. When annealed at 1000 °C, the alloy has a pure L12 (γ′) ordered structure. After subsequent annealing at 750 °C, the disordered solid solution of Al and Si in Ni (face centred cubic, γ) precipitates in fine coherent particles. Calorimetry helps to describe the various phase transformations necessary to obtain the last microstucture. Solute addition of Si, which replaces Al atoms, increases the 0.2% flow stress of Ni3Al in the fully γ′ microstructure. The γ precipitation shifts the peak stress towards higher temperatures and stresses.  相似文献   

8.
The sulfidation/oxidation and carburization resistances of a Ni3Al(Mo) (IC-6) alloy at high temperatures were investigated in this work. The corrosion kinetics of the IC-6 alloy was found to follow parabolic rate law in an environment of high partial pressures of sulfur (10−5 atm) and low partial pressures of oxygen (<10−20 atm) at 700 °C. Because the Ni sulfides are readily formed at the testing temperature, the sulfidation/oxidation resistance of the IC-6 alloy is similar to that of commercial Ni–Cr alloys in the current environments, although IC-6 is alloyed with Al. Compared with the HP heat resistant steel which is commonly used in the petrochemical industry, the IC-6 alloy possesses significantly improved resistance to carburization at 1100 °C. The mechanisms governing the corrosion attack in the environments used in this investigation were also discussed.  相似文献   

9.
《Intermetallics》1999,7(5):543-551
Ni3(Si,Ti) alloys containing different levels of boron were tensile tested in air at room temperature at two different strain rates. The grain boundary compositions and fracture modes of these alloys were determined by Auger spectroscopy and scanning electron microscopy, respectively. Tensile elongation and fracture mode depend upon the fabrication procedure, heat treatment, and strain rate. Widely different boron concentrations were observed at the grain boundaries, depending on the fabrication procedure and heat treatment. In addition, silicon and titanium were depleted while nickel was enriched at the grain boundaries in all specimens examined. Tensile elongations correlated well with the grain boundary concentration of boron and also with an embrittlement parameter defined as (Si+Ti−B)/Ti. A sharp brittle-ductile transition was found to occur with increasing grain boundary concentration of boron and with decreasing values of the embrittlement parameter (Si+Ti−B)/Ti. The critical grain boundary concentrations corresponding to this transition were found to be sensitive to the strain rate. All the results can be explained in terms of the effect of grain-boundary composition on moisture-induced environmental embrittlement.  相似文献   

10.
Nanocrystalline Ni3Al was fabricated through mechanical alloying of elemental powders and spark plasma sintering. The nanocrystalline Ni3Al has a nearly full density after being sintered at 1223 K for 10 min under a pressure of 65 MPa. Isothermal and cyclic oxidations of nanocrystalline Ni3Al were tested at 1173–1373 K with intervals of 100 K. The results indicate that nanocrystalline Ni3Al exhibits excellent isothermal and cyclical oxidation resistance. The oxide scales consist primarily of dense and continuous -Al2O3. The grain refinement is beneficial for improving the oxidation resistance of Ni3Al by providing more nucleation centers for the Al2O3 formation, promoting the selective formation of Al2O3 and improving the adhesion of oxide scales to the matrix.  相似文献   

11.
The paper describes the preparation of Ni3Al-based intermetallic compounds and investigations of their structures in the ascast, worked, and annealed states. The performed experimental works approved a possibility of hot working of the highly brittle polycrystalline intermetallic compound Ni3Al with large grain cast structure. The facility of originating the recrystallization seems to be surprising in such a material. On the other hand, the growth of recrystallization nuclei is strongly retarded. The case is further complicated by the fact of heterogeneous deformation in the microvolume. Microalloying with boron or zirconium influenced the original structure parameters as well as the optimum deformation temperature. Simultaneously the probability of a transgranular cleavage fracture increased. For the stoichiometric Ni3Al intermetallic compound the optimum deformation temperature 1150 °C has been assessed. At temperature 1250 °C, the alloy Ni3Al + 0,1 at. % B manifested the best plasticity. The special type of rotary working combined with friction heating gave the best results from point of view of obtaining a fully recrystallized region.  相似文献   

12.
SURFACEREACTION,HYDROGENDIFFUSIVITYANDENVIRONMENTALEMBRITTLEMENTOFINTERMETALLICCOMPOUNDSNi_3AlANDFe_3AlWANXiaojing;ZHUJiahong;...  相似文献   

13.
Zhenyu Liu  Wei Gao 《Intermetallics》2000,8(12):1385-1391
Specimens of cast and micro-grained γ′-Ni3Al, which were produced with vacuum casting and unbalanced magnetron sputter deposition, respectively, were isothermally oxidised in air at 1473 K for different periods of time. The formation of interfacial voids at the alloy/oxide interface was observed with SEM, which indicated that there were more interfacial voids formed in the cast Ni3Al than in the micro-grained alloy under the same oxidation conditions. A phenomenological equation describing the fraction of the void projected areas was established, in which the impingement and coalescence between voids during their growth was taken into consideration. It was elucidated that low vacancy density in the micro-grained Ni3Al due to the high creep, re-crystallisation and the enhanced Al diffusion reduced the void percentage. Also, it was confirmed that aluminium evaporation, perhaps supplemented by surface diffusion, supplied most Al to the oxide scales formed above the interfacial voids.  相似文献   

14.
J. Lapin 《Intermetallics》1997,5(8):615-624
The effect of ageing in the temperature range from 1023 to 1373 K on the micro-structure and mechanical behaviour of a directionally solidified (DS) Ni3Al-based alloy modified with additions of chromium and iron was investigated. The microstructure of the as-grown alloy consisted of well-aligned and equally spaced lamellas composed of β(B2) intermetallic compound NiAl (Cr, Fe), some β′(L10) martensite and spherical -Cr precipitates. The matrix consisted of γ′(L12) intermetallic compound Ni3Al (Cr, Fe), γ-phase (Ni-based solid solution) and lath-shaped -Cr precipitates. Ageing at 1123 and at 1173 K was found to be the most effective in transforming the unstable lamellae to γ′-phase and -Cr precipitates. The change of microstructural characteristics such as volume fraction of lamellae, size, morphology and distribution of γ′-phase, γ-phase and -Cr precipitates significantly influenced the room-temperature yield strength and elongation of DS alloy after ageing. The strain-hardening exponent varied with the ageing temperature between 0.30 and 0.46 and the quasi-steady work-hardening rate between 2710 and 5340 MPa. In the specimens with the lowest amount of disordered regions, the strain-hardening exponent was found to be 0.46 and the quasisteady work hardening rate was determined to be 3340 MPa.  相似文献   

15.
The interaction of water vapor with single crystal Ni3(Al, Ti) has been studied with Auger electron spectroscopy, photoemission spectroscopy and thermal desorption. Water adsorbs molecularly onto the (111) and (100) surfaces at 140 K. When warmed up to room temperature, water remains as an intact molecule on (111), but dissociates to surface hydroxyl and atomic oxygen on (100). The latter process is accompanied by the evolution of hydrogen and oxidation of Al. It appears that the dissociation of water is structure-sensitive and that Al is the active species in controlling the dissociation of water on Ni3Al surfaces.  相似文献   

16.
1.IntroductionIronaluminidesbasedonFe3AlandFeAlhaveexcellentresistancetooxidationandrelativelylowcost,whicharepr0misingcandidatesforuseasastructuralmaterialincor-rosiveenvir0nmelltsl1'2].H0wever,thesealloyshaven0tyetfoundwidespreadusebecausetheyexhibitpoorductilityatambienttemperatures,accompaniedbybrittlefracture-Thebrittlebehaviorhasrecentlybeenattributedt0environmenta1embrittlementinvolvinggen-eration0fatomichydr0genatthecracktipwhichisthentransportedintothespecimenduringloadingpr0ducingb…  相似文献   

17.
Ti0.32Cr0.43V0.25 alloy specimens were heat treated, and its various hydrogen storage properties were measured at 303 K to examine its potential as a hydrogen storage material. The heat treatment improved not only the total and the effective hydrogen storage capacities, but also the plateau flatness. The heat of hydride formation was approximately −36 kJ/mol H2. The effective hydrogen storage capacity remained at approximately 2 wt% after 1000 cycles of pressure swing cyclic tests. The hydrogen storage capacity could be recovered almost to the initial state by reactivating the alloy. The hydrogen absorption rate increased with the repetition of cycling for the first several cycles and remained almost constant afterward. At the 504th cycle, more than 98% of the hydrogen was absorbed within the first 2 min. X-ray diffraction (XRD) patterns showed that the crystal structure of the alloy became more amorphous as the number of cycles increased.  相似文献   

18.
The formation of electroless Ni–B coatings obtained using a low temperature bath and evaluation of their characteristic properties are addressed in this paper. An alkaline bath having nickel chloride as the source of nickel and borohydride as the reducing agent was used to prepare the electroless Ni–B coatings. The influence of concentration of sodium borohydride in bath on the plating rate and the nickel/boron content of the resultant Ni–B coatings was studied. Selected coatings were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM), respectively, for assessing the phase content, phase transformation behaviour and magnetic properties. XRD patterns reveal that the structure of electroless Ni–B coatings in as-plated condition is a function of the boron content of the coating: higher the boron content, greater the amorphous nature of the coating and vice-versa. DSC traces exhibit two exothermic peaks around 300 and 420 °C, corresponding to the phase transformation of crystalline nickel and Ni3B phases at 300 °C and the transformation of a higher phase compound to Ni3B at 420 °C. VSM studies indicate that the magnetic properties of the coating is also a function of the boron content of the coating: higher the boron content, lesser the saturation magnetization.  相似文献   

19.
The present paper focuses on the observed corrosion-induced embrittlement of alloy 2024 and tries to answer the key question on whether the observed embrittlement is attributed to hydrogen uptake and trapping in the material. Hydrogen is produced during the corrosion process and is being trapped in distinct energy states, which correspond to different microstructural sites. The formation of a hydrogen-affected zone beneath the corrosion layer is supported by fractographic analysis. Removal of the corrosion layer leads to complete restoration of yield strength but only partial restoration of ductility. Additional heat treatment to release the trapped hydrogen leads only to complete restoration of ductility.  相似文献   

20.
The all-d-metal Ni-Mn-Ti Heusler alloy has giant elastocaloric effect and excellent mechanical properties, which is different from the conventional Ni-Mn-based Heusler alloys. In this work, the preferred site occupation, phase stability, martensitic transformation, magnetic properties, and electronic structure of the B-doped Ni2Mn1.5Ti0.5 alloys are systematically investigated by the first-principles calculations. The results show that B atoms preferentially occupy the octahedral interstitial. The doped B atoms tend to exist in the (Ni2Mn1.5Ti0.5)1-xBx (x = 0.03, 0.06, 0.09) alloy in the form of aggregation distribution, and the martensitic transformation temperature decreases with the increase in the B content. For octahedral interstitial doping, the toughness and plasticity of the (Ni2Mn1.5Ti0.5)1-xBx alloys decrease, but the strength and rigidity are greatly enhanced. This is because a small part of the d-d hybridization in ternary Ni-Mn-Ti alloy is replaced by the p-d hybridization in Ni-Mn-Ti-B alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号