首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
减小平面近场测量中多次反射误差的新方法   总被引:1,自引:0,他引:1       下载免费PDF全文
本文给出了用平面近场技术测量超低副瓣天线时,平面近场测量总误差与天线远场方向图副瓣电平的误差方程,并进行了计算机仿真;提出了减小平面近场测量中探头天线与待测天线间多次反射误差和微波暗室电特性误差对超低副瓣天线所引入的测量误差的"自校准法",实验结果说明该方法是解决平面近场测量中多次反射和微波暗室电特性误差较为理想的方法.  相似文献   

2.
有限扫描面截断是影响天线平面近场测量精度的主要误差源之一,尤其是对于波束扫描的相控阵天线的平面近场测量更是如此。为了减小相控阵天线平面近场测量中的有限扫描面截断误差,介绍了余弦窗函数并将其应用到相控阵天线平面近场测量中。计算机模拟结果表明,通过对近场进行加余弦窗的数据处理能够有效地减小有限扫描面截断误差。提出了对近场数据进行加余弦窗处理的适用条件。  相似文献   

3.
平面近场测量是天线测量的一种重要方法,而平面近场扫描架是天线近场测量系统中的关键设备,对它的控制直接关系到整个近场测量系统的成败。本文介绍了一种天线平而近场测量系统中扫描架的结构,工作原理及控制方法。实践证明,这种控制方法完全满足系统要求。  相似文献   

4.
导出了平面近场测量中近场幅相随机误差所引起的误差谱的解析表达式。利用计算机模拟和统计平均的方法研究了近场幅相随机误差对超低副瓣天线平面近场测量结果的影响 ,并给出不同口径尺寸的超低副瓣天线的平面近场测量 ,为保证- 5 5 d B副瓣± 5 d B的测试精度 ,所能允许的近场幅相随机误差的最大起伏度  相似文献   

5.
介绍了天线近场测量的基本原理和HD-1型平面近场测试系统,并对近场测量在实际天线测试中的应用情况,发展方向和应用前景等作了简单的描述。  相似文献   

6.
本文运用了Jacobi-Bessel级数展开法对近场测量数据进行处理,推算出天线的远场方向图,给出了计算步骤和测量概要,最后,用1.5米反射面天线作为模拟天线,获得其近场数据,由此推出天线的远场方向图,并且和实测结果进行了比较.在确定大的和对地球引力敏感的空间天线远场方向图时,讨论了极平面构形在机械和电性能上的独特优点.  相似文献   

7.
天线平面近场测量中一种近远场变换方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文研究了一种应用于天线平面近场测量中完成近远场变换的数值算法。利用此方法可以依据天线平面近场测试数据快速简便地求得天线远场方向图及其它特性,其精度较高;同时可以很方便地进行探头修正,并讨论天线平面近场测试中各关键参数对测试结果的影响。本文给出了理论依据和具体计算实例,与传统方法进行了比较,并得出了结论。  相似文献   

8.
介绍了一种利用近场测量系统进行阵列天线口径反演的新方法。该方法将近场测量系统采集的近场数据变换到平面波谱(PWS),在平面波谱上进行天线单元因子补偿后运用口径场反演算法,重构出被测阵列天线口径面上各天线单元馈电端口的幅相分布。随后使用计算机模拟的方法在理想近场数据上加入单元通道误差,将乘积反演方法与传统插值反演方法在模拟结果上进行对比,随后分析了单元不一致给反演结果带来的影响,证明了该方法具有较高的反演精度,有效提高了阵列天线口径校正的效率。  相似文献   

9.
在平面近场天线测量中,有限扫描面截断是影响测量精度的主要误差源之一,找到解决截断误差的方法是天线测量的研究重点之一.文中将平面近场天线测量中由有限区域内的场求平面波谱的过程抽象为带限函数外推的数学模型,从实际测量中的近远场变换理论出发,论证了GP(Gerchberg-Papoulis)算法应用在平面近场测量中在理论上是切实可行的.将GP算法应用在平面近场天线测量中,并分析了不同迭代次数算法的修正情况.结果表明,随着算法迭代次数的增多,可信角域外计算方向图与理论方向图差别明显减小.因此,本文的方法能够明显减小平面近场测量中截断误差的影响.除此以外,还分析了误差对算法收敛性的影响,结果表明,误差对算法修正效果影响较大.  相似文献   

10.
介绍用于天线平面近场测量的一种近远场变换新算法。该法利用被测天线的平面波谱和口径场幅相分布之间的关系,以及天线口面的约束条件,用G-P迭代算法从平面波谱的置信谱域部分恢复出置信谱域外的平面波谱。这种方法减小了较小截断角下有限扫描面对测量精度的影响,并提高了天线近场测量的效率。  相似文献   

11.
Certain unique features of a recently constructed plane-polar near-field measurement facility for determining the far-field patterns of large and fragile spaceborne antennas are described. In this facility, the horizontally positioned antenna rotates about its axis while the measuring probe is advanced incrementally in a fixed radial direction. The near-field measured data is then processed using a Jacobi-Bessel expansion to obtain the antenna far fields. A summary of the measurement and computational steps is given. Comparisons between the outdoor far-field measurements and the constructed far-field patterns from the near-field measured data are provided for different antenna sizes and frequencies. Application of the substitution method for the absolute gain measurement is discussed. In particular, results are shown for the 4.8-m mesh-deployable high-gain antenna of the Galileo spacecraft which has the mission of orbiting Jupiter in 1988.  相似文献   

12.
A number of details are clarified regarding the sampling-reconstruction theorem for near-field scanning in plane-polar coordinates. The rigorous sampling-reconstruction theorem is applied to the near-field measurement of a circular aperture test antenna offset from the plane-polar axis of rotation, so that a large number of angular modes are necessary to represent the fields of the test antenna. An algorithm is described for computing accurately and rapidly the required zeros of Bessel functions of arbitrary integer order  相似文献   

13.
14.
The four-point bivariate Lagrange interpolation algorithm was applied to near-field antenna data measured in a plane-polar facility. The results were sufficiently accurate to permit the use of the FFT (fast Fourier transform) algorithm to calculate the far-field patterns of the antenna. Good agreement was obtained between the far-field patterns as calculated by the Jacobi-Bessel and the FFT algorithms. The significant advantage in using the FFT is in the calculation of the principal plane cuts, which may be made very quickly. Also, the application of the FFT algorithm directly to the near-field data was used to perform surface holographic diagnosis of a reflector antenna. The effects due to the focusing of the emergent beam from the reflector, as well as the effects of the information in the wide-angle regions, are shown. The use of the plane-polar near-field antenna test range has therefore been expanded to include these useful FFT applications  相似文献   

15.
It is well-known that the far field of an arbitrary antenna may be calculated from near-field measurements. Among various possible nearfield scan geometries, the planar configuration has attracted considerable attention. In the past the planar configuration has been used with a probe scanning a rectangular geometry in the near field, and computation of the far field has been made with a two-dimensional fast Fourier transform (FFT). The applicability of the planar configuration with a probe scanning a polar geometry is investigated. The measurement process is represented as a convolution derivable from the reciprocity theorem. The concept of probe compensation as a deconvolution is then discussed with numerical results presented to verify the accuracy of the method. The far field is constructed using the Jacobi-Bessel series expansion and its utility relative to the FFT in polar geometry is examined. Finally, the far-field pattern of the Viking high gain antenna is constructed from the plane-polar near-field measured data and compared with the previously measured far-field pattern. Some unique mechanical and electrical advantages of the plane-polar configuration for determining the far-field pattern of large and gravitationally sensitive space antennas are discussed. The time convention exp (j omega r) is used but is suppressed in the formulations.  相似文献   

16.
A probe-corrected vector transmission formula and a rigorous sampling-reconstruction theorem for near-field antenna measurements in plane-polar coordinates are derived from three fundamental theorems of antenna theory: the mutual coupling function between two antennas satisfies the homogeneous wave equation; a receiving antenna can be represented as a differentiator of the incident field; and the mutual coupling function is virtually bandlimited. The rigorous sampling equations are applied to compute the far fields of a circular-aperture antenna sampled in the near field at half-wavelength radial spacing  相似文献   

17.
It is known that a direct radial integration, used to compute the far-field from uniformly spaced plane-polar near-field measurements requires the evaluation of a large amount of Bessel functions and hence CPU time. Up to 1985 only unequally spaced fast Hankel algorithms were available. Hansen [3] developed an algorithm that was usable for equally spaced measurements points, but only for order zero. His theory is generalised in this paper and applied to a plane-polar near-field to far-field transformation.  相似文献   

18.
We introduce a near-field to far-field transformation algorithm that relaxes the usual restriction that data points be located on a plane rectangular grid. Computational complexity is O(Nlog N) where N is the number of data points. This algorithm allows efficient processing of near-field data with known probe position errors. Also, the algorithm is applicable to other measurement approaches such as plane-polar scanning, where data are collected intentionally on a nonrectangular grid  相似文献   

19.
An optimal sampling interpolation algorithm which allows the accurate recovery of plane-rectangular near-field samples from the knowledge of the plane-polar ones is developed. This enables the standard near-field-far-field (NF-FF) transformation, which takes full advantage of the fast Fourier transform (FFT) algorithm, to be applied to plane-polar scanning. The maximum allowable sample spacing is also rigorously derived, and it is shown that it can be significantly greater than λ/2 as the measurement place moves away from the source. This allows a remarkable reduction of both measurement time and memory storage requirements. The sampling approach is compared with that based on the bivariate Lagrange interpolation (BLI) method. The sampling reconstruction agrees with the exact results significantly better than the BLI, in spite of the significantly lower number of required measurements  相似文献   

20.
天线的远场对于研究天线辐射特性具有重大意义,近场测量技术因其能够避免直接测量远场而得到广泛应用,该技术采用近远场变换获得远场,然而,检验该远场的准确性也是很重要的.为了解决此类问题,文中以球面近场测量为例,提供了一种解决方案.该方案主要探讨了球面波模式展开理论,该理论是实现球面近远场变换算法的关键,其将待测天线在空间建立的场展开成球面波函数之和,天线的加权系数既包含了远场信息也包含了近场信息.因此,不仅能够利用近场测量信息获得远场辐射特性,同样能够利用远场辐射特性反推得到近场处电场,这样就能检验由近远场变换算法得到的远场是否准确.文中首先推算得到了近远场变换公式,随后进一步推算得到远近场变换的公式,最后将本文算法计算结果与FEKO测量结果进行比较,二者吻合良好,从而证实了本文两种算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号