首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
2,6-二氨基-3,5-二硝基-1-氧吡嗪爆炸参数的理论计算   总被引:6,自引:0,他引:6  
运用预测炸药分解产物的BW法则、计算爆速的Rthsteine's方法和计算C-J压力的库珀方法等,对钝感含能材料2,6-二氨基-3,5-二硝基-1-氧吡嗪(LLM-105)的爆炸参数进行了理论计算;并与HMX和TATB的爆炸参数进行了比较,结果表明LLM-105是一种能量超过TATB、接近HMX的钝感含能材料.  相似文献   

2.
以2,6-二氯吡嗪为原料,合成了新型含能化合物3,5-二氨基-2,6-二硝基吡嗪~(-1)-氧化物(DDPZO-i),收率40%。用IR、NM R、M S技术表征了其结构。通过X射线衍射技术确定了其单晶晶体结构。利用差示扫描量热法研究了其热稳定性,确定其分解峰值温度为215℃。DDPZO-i的实测密度为1.935 g·cm~(-3),高于耐热炸药LLM~(-1)05。用Gaussain03软件计算的标准生成焓为169.4 k J·mol~(-1)。对吡嗪骨架氧化反应机理进行了推测。采用Explore5 v6.02软件预估的DDPZO-i的爆速为9070 m·s~(-1),爆压为36.9 GPa,均优于LLM~-105。用BAM撞击感度仪实测的撞击感度为5 J,高于LLM-105的撞击感度。  相似文献   

3.
以2,4,6-三硝基氯苯与2,6-二氨基吡嗪为原料,经过缩合、硝化两步反应,合成了一种新化合物2,6-二苦氨基-3,5-二硝基吡嗪(BPNP),总收率为47%。采用红外光谱(FTIR)、核磁共振(NMR)、质谱(MS)对产物进行了表征。确定了以异丙醇为溶剂,吡啶为催化剂时的产率最高;以V(H_2SO_4)∶V(HNO_3)=4∶1,反应温度50℃,反应时间3h,硝化效果最佳。热重分析(TG)和差示扫描量热结果表明,该化合物的热分解温度为374.3℃,热稳定性与2,6-二苦氨基-3,5-二硝基吡啶(PYX)相当。用MonteCarlo方法估算其理论密度为1.82g·cm~(-3),用Kamlet-Jacobs公式估算其爆速为8.13km·s~(-1),爆压为28.25GPa;采用Miroslav的静电势预估撞击感度的方法,对目标结构进行了稳定性预算,其撞击感度H_(50)的计算值为83cm。理论计算结果说明该材料密度和爆压均高于PYX,具有一定的应用研究价值。  相似文献   

4.
GI-920炸药的热分解动力学研究   总被引:1,自引:0,他引:1  
根据PETN和GI-920炸药在升温速率分别为5,10,20 K·min-1的DSC-TG曲线,对PETN和GI-920炸药的热分解过程进行了研究,用Ozawa法和非线性等转化率积分法获得PETN和GI-920炸药热分解动力学参数和机理函数.结果表明,PETN与GI-920炸药的热分解机理属随机成核和随后生长.在不同升温速率的TG曲线上,GI-920炸药热失重开始温度大致相同.GI-920炸药DSC曲线呈现一个吸热熔化峰和一个放热分解峰,130 ℃以下有良好的热稳定性.GI-920炸药热分解的活化能、指前因子和机理函数分别为156.02 kJ·mol-1、1.934×1017 s-1、f(α)=4/3(1-α)[-ln(1-α)](1)/(4),热分解动力学方程为: dα/dt=2.579×1017×(1-α)[-ln(1-α)](1)/(4)exp(-(1.876×104)/(T)).  相似文献   

5.
为研究高能量密度材料2,4,6-三氨基-3,5-二硝基吡啶-1-氧化物(TANPyO)的热分解性能和热稳定性,利用绝热加速量热仪(ARC)测量其在绝热条件下的热分解过程,获得了热分解的温升速率、温度和压力等随时间的变化关系以及温升速率、压力随温度的变化曲线。结果表明:TANPyO绝热分解主要有两个放热过程,其中第二过程温升速率升降幅度较大,为主要的热分解过程。TANPyO初始分解温度高达252.7℃,具有良好的热稳定性。根据温升速率方程和Arrhenius公式计算出TANPyO表观活化能、指前因子和反应热分别为476.96kJ·mol-1、6.920×1042 min-1和930.84J·g-1。  相似文献   

6.
杨雷  刘玉存  荆苏明 《含能材料》2020,28(7):690-694
为了研究2,4,6-三硝基-3,5-二氟苯酚的热分解行为,采用热失重-差热分析(TG-DTA)方法对2,4,6-三硝基-3,5-二氟苯酚的非等温热分解动力学进行研究。在氮气的氛围下,分别以升温速率为5,10,15,20 K·min~(-1)对2,4,6-三硝基-3,5-二氟苯酚的TG-DTA曲线进行实时分析。采用F-W-O、Doyle、Kissinger和Satava-Sestak方法分别计算了2,4,6-三硝基-3,5-二氟苯酚的活化能(E)、指前因子(A)等热分解动力学参数,结果表明,该化合物在热分解过程中先转变为熔融态再进行分解,且分解时迅速放热。计算其热分解的表观活化能平均值为123.06 kJ·mol~(-1),指前因子为1.37×1013 min~(-1),确定其反应机理函数的积分形式为g(α)=α~(1/2),根据其活化能和指前因子计算其热分解过程中的活化焓ΔH~≠为1 22.65 kJ·mol~(-1),活化熵ΔS~≠为121.46J·mol~(-1)·K~(-1),活化吉布斯自由能ΔG~≠为62.98 kJ·mol~(-1)。  相似文献   

7.
为考察2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)的热稳定性,用绝热加速量热仪测定了ANPyO的绝热分解过程,获得了分解的温度、压力、升温速率等随时间的变化曲线以及温升速率、分解压力随温度的变化曲线。结果表明:绝热分解过程有两个放热反应阶段,其中第一阶段为主要的热分解阶段,温升速率有显著的变化。计算得表观活化能为293.61 kJ·mol-1、指前因子为1.515×1023min-1,反应热为940.92 J·g-1。ANPyO初始分解温度高达290.8℃,有良好的热稳定性。  相似文献   

8.
研究了2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)经酰化、重结晶和还原的新精制工艺,考察了精制工艺条件对ANPyO纯度、粒径分布、机械感度、摩擦感度和微观结构的影响。对比了新精制工艺样品和三氟乙酸精制样品的酸度、熔点、热安定性和撞击感度。结果表明,精制中间体2,6-二乙酰氨基-3,5-二硝基吡啶-1-氧化物采用DMF作溶剂重结晶,氨气作胺化剂,50 ℃条件下所得ANPyO产物总收率为90.5%,纯度为99.5%,样品的粒度、微观结构和安全性能较理想。新精制工艺所得产物pH为6.3,熔点355 ℃,真空安定性0.01 mL·g-1,撞击感度257 cm,摩擦感度2%,性能显著优于三氟乙酸精制所得ANPyO产物。  相似文献   

9.
尹利  郭子如 《含能材料》2007,15(2):175-177
利用DSC研究了二级煤矿许用乳化炸药的热分解过程。用Kissinger法、Flynn-Wall-Ozawa法和非线性等转化率法计算了其表观活化能Ea和指前因子A。atava-est k法结果表明:该过程的反应机理归属为三维扩散(圆柱形对称),机理函数为Ginstling-Broushtein方程。二级煤矿许用乳化炸药的热分解特征温度与乳化炸药实际生产过程中的乳化温度、敏化温度及其使用温度的比较表明二级煤矿许用乳化炸药有良好的热安全性。  相似文献   

10.
徐容  廖龙渝  王述存  张勇 《兵工学报》2015,36(11):2099-2103
2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)是性能优异的耐热炸药,其晶体形状对安全及加工性能有较大影响,重结晶溶剂和方法直接影响所得LLM-105的晶体特性。用二甲基亚砜和65%硝酸为溶剂,分别采用降温法、正相和反相溶剂/非溶剂法及超声波辅助结晶的方法,对LLM-105进行了重结晶研究。研究结果表明:无论用何种溶剂,直接降温法重结晶得到的LLM-105,晶体形状均不规则;用溶剂/非溶剂正相滴加法在超声作用下可以得到表面光滑、无孪晶的颗粒状晶体,纯度达98%以上;用溶剂/非溶剂反相滴加法也可以得到表面光滑、无孪晶的规则颗粒状晶体,纯度达98%以上;用65%浓度的HNO3水溶液反相滴加重结晶得到的LLM-105晶体平均粒径适中,粒度跨度小,撞击感度最低。获得了纯度和晶型好,感度大幅度降低LLM-105的制备方法:65%HNO3水溶液反相滴加法。  相似文献   

11.
2,6-diamino-3,5-dinitropyrazine-1-oxide (ANPZO), as an insensitive high explosive, with a high yield and excellent purity has been prepared at pilot plant scale by an improved method. The synthesized ANPZO is characterized by IR, laser granularity measurement, SEM and HPLC. The particle analysis revealed that the improved method could offer desired product with average particle size of 40 gm and high purity (〉98.45%). The experimental parameters exhibited that the detonation velocity of the formulation based on ANPZO was higher than that of the corresponding TATB formulation. The DSC curve showed that the exothermic decomposition of the product occurred at the temperature between 300.5℃ and 360.4℃. Furthermore, the sensitivity test suggests its safe nature towards mechanical stimulus.  相似文献   

12.
为提高LLM-105的耐热性能,采用溶液水悬浮法,以EPDM为粘接剂,制备了LLM-105/EPDM耐热传爆药。通过测试接触角、计算表面能验证了EPDM能够包覆LLM-105。采用SEM对包覆前后样品的形貌进行了表征,并对其热分解特陛进行了测试和分析。结果表明:造型粉表面形貌得到了明显改善,原料LLM-105的粒度与激光粒度仪测试结果基本一致;EPDM在一定程度上可降低LLM-105的热感度;与传统传爆药相比,LLM-105/EPDM具有更加优异的耐热性能和热稳定性。  相似文献   

13.
以2,6-二氨基吡啶为起始原料,经硝化、氮氧化两步反应得到2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)。硝化反应和氮氧化反应收率分别为90%、84%,ANPyO总收率为75%,高于Ritter-Licht公开的方法(45%)。测试了ANPyO的爆速(7000m.s-1,1.50g.cm-3)、DSC放热峰(365℃),以及5s延滞期爆发点(400℃)、摩擦感度(360N)和落锤感度(250cm)。结果表明:ANPyO爆轰性能和安全性能与1,3,5-三氨基-2,4,6-三硝基苯(TATB)接近,是一种在含能材料领域有应用前景的新型高能钝感炸药。  相似文献   

14.
2,6-二氨基-3,5-二硝基吡啶-1-氧化物的合成新方法   总被引:1,自引:5,他引:1  
成健  姚其正  刘祖亮 《含能材料》2009,17(2):166-168
以2,6-二氨基吡啶为起始原料,经酰基化、氮氧化、硝化、水解四步反应得到2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO),总收率为81%.讨论了影响酰基化、氮氧化、硝化等反应的因素,用1H NMR, MS和红外光谱对ANPyO及其中间体结构进行了表征.该方法是对文献[7]报道方法的进一步改进,提高了反应过程的安全性,后处理更加简单.  相似文献   

15.
何志伟  成健  刘祖亮 《含能材料》2009,17(4):392-395
为了研究不同溶剂精制的2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)的性能,分别以三氟乙酸(CF3COOH)、二甲基亚砜(DMSO)和N,N-二甲基甲酰胺(DMF)为溶剂,采用重结晶法精制ANPyO,对精制后样品性能进行比较研究.结果表明:用CF3COOH重结晶精制的ANPyO,粒度主要分布在2~70 μm,比表面积为0.454 m2·g-1; 在升温速率为10 K·min-1的条件下,分解热焓为1021.46 J·g-1,最高峰值温度为370.69 ℃,表观活化能为279.63 kJ·mol-1;撞击和摩擦感度,分别为 20%和18%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号