首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twelve healthy, experienced underground coal miners performed lifting capacity tests in stooped and kneeling postures using a modified psychophysical, procedure. Subjects adjusted weight in a lifting box to the maximum they could handle without undue fatigue in an asymmetric lifting task. Lifting periods were 20 min in duration and the frequency was 10 lifts/min. Tests were performed under a 48-in. roof that restricted the subject's posture. Psychophysical, physiological, and biomechanical dependent measures included the maximum acceptable weight of lift (MAWL), heart rate (HR), rate of oxygen consumption (V̇O2), ventilation volume rate (V̇E), respiratory exchange ratio (R), and integrated electromyography (EMG) of eight trunk muscles. Results indicated that the MAWL was significantly lower when kneeling than when stooped (p < 0.05). Furthermore, metabolic demands were greater in terms of HR (p < 0.005) and VO2 (p < 0.05) when kneeling. Left and right erectores spinae muscles exhibited increased EMG activity in the kneeling posture (p < 0.001). It was concluded that psychophysical lifting capacity is decreased, while the metabolic stress and internal load on the spine are increased, in the kneeling posture. Results of this Bureau of Mines study indicate that it may be advisable to reduce the weight of materials that are handled repetitively in the kneeling posture.  相似文献   

2.
Underground coal miners who work in low-seam mines frequently handle materials in kneeling or squatting postures. To assess quadriceps and hamstring muscle demands in these postures, nine participants performed lateral load transfers in kneeling and squatting postures, during which electromyographic (EMG) data were collected. EMG activity was obtained at five points throughout the transfer for three quadriceps muscles and two hamstring muscles from each thigh. ANOVA results indicated that EMG data for nine of 10 thigh muscles were affected by an interaction between posture and angular position of the load lifted (p < 0.001). Muscles of the right thigh were most active during the lifting portion of the task (lifting a block from the participant's right) and activity decreased as the block was transferred to the left. Left thigh muscles showed the opposite pattern. EMG activity for the majority of thigh muscles was affected by the size of the base of support provided by different postures, with lower EMG activity observed with a larger base of support and increased activity in postures where base of support was reduced (p < 0.05). Thigh EMG activity was lowest in postures with fully flexed knees, which may explain worker preference for this posture. However, such postures are also associated with increased risk of meniscal damage. STATEMENT OF RELEVANCE: Kneeling and squatting postures are sometimes used for manual lifting activities, but are associated with increased knee injury risk. This paper examines the EMG responses of knee extensors/flexors to lifting in these postures, discusses the impact of posture and kneepads on muscle recruitment and explores the implications for work in such postures.  相似文献   

3.
S Gallagher 《Ergonomics》1991,34(7):939-952
Eight healthy, male underground coal miners (mean age = 36.9 yrs +/- 4.5 SD) participated in a study examining psychophysically acceptable weights and physiological costs of performing combined lifting and lowering tasks in restricted head-room conditions. Independent variables included posture (stooping or kneeling on two knees), task symmetry (symmetric or asymmetric), and vertical lift distance (35 cm or 60 cm). All tasks were 10 min in duration and were performed under a 1.22 m ceiling to restrict the subject's posture. Subjects were required to raise and lower a lifting box every 10s, and asked to adjust the box weight to the maximum amount they could handle without undue strain or fatigue. During the final 5 min of each test, data were collected to determine the energy expenditure requirements of the task. Results of this study demonstrated that psychophysical lifting capacity averaged 11.3% lower when kneeling as compared to stooping. Subjects selected 3.5% more weight in asymmetric tasks, and lifted 5.0% less weight to the 60 cm shelf compared to the 35 cm shelf. Heart rate was not significantly affected by posture, but was increased an average of 4 beats/min in asymmetric conditions, and by 3.5 beats/min while lifting/lowering to/from the high shelf. Oxygen uptake was increased by 9% when stooped, by 10% when lifting/lowering asymmetrically, and by 8.2% when performing the task to the high shelf. Results of this study indicate that, wherever possible, materials that must be lifted manually in low-seam coal mines be designed in accordance with the decreased lifting capacity exhibited in the kneeling posture.  相似文献   

4.
S Gallagher  C A Hamrick 《Ergonomics》1992,35(9):1013-1031
A series of psychophysical lifting studies was conducted to establish maximum acceptable weights of lift (MAWL) for three supply items commonly handled in underground coal mines (rock dust bags, ventilation stopping blocks, and crib blocks). Each study utilized 12 subjects, all of whom had considerable experience working in underground coal mines. Effects of lifting in four postures (standing, stooping under a 1.5 m ceiling, stooping under a 1.2 m ceiling, and kneeling) were investigated together with four lifting conditions (combinations of lifting symmetry and lifting height). The frequency of lifting was set at four per min, and the task duration was 15 min. Posture significantly affected the MAWL for the rock dust bag (standing MAWL was 7% greater than restricted postures and kneeling MAWL was 6.4% less than stopped); however, posture interacted with lifting conditions for both of the other materials. Physiological costs were found to be significantly greater in the stooped postures compared with kneeling for all materials. Other contrasts (standing versus restricted postures, stooping under 1.5 m ceiling versus stopping under 1.2 m ceiling) did not exhibit significantly different levels of energy expenditure. Energy expenditure was significantly affected by vertical lifting height; however, the plane of lifting had little influence on metabolic cost. Recommended acceptable workloads for the three materials are 20.0 kg for the rock dust bag, 16.5 kg for the ventilation stopping block, and 14.7 kg for the crib block. These results suggest that miners are often required to lift supplies that are substantially heavier than psychophysically acceptable lifting limits.  相似文献   

5.
《Ergonomics》2012,55(7):939-952
Eight healthy, male underground coal miners (mean age=36·9 yrs±4·5 SD) participated in a study examining psychophysical acceptable weights and physiological costs of performing combined lifting and lowering tasks in restricted headroom conditions. Independent variables included posture (stooping or kneeling on two knees), task symmetry (symmetric or asymmetric), and vertical lift distance (35 cm or 60cm). All tasks were 10min in duration and were performed under a 1·22 m ceiling to restrict the subject's posture. Subjects were required to raise and lower a lifting box every 10 s, and asked to adjust the box weight to the maximum amount they could handle without undue strain or fatigue. During the final 5 min of each test, data were collected to determine the energy expenditure requirements of the task. Results of this study demonstrated that psychophysical lifting capacity averaged 11·3% lower when kneeling as compared to stooping. Subjects selected 3·5% more weight in asymmetric tasks, and lifted 5·0% less weight to the 60 cm shelf compared to the 35 cm shelf. Heart rate was not significantly affected by posture, but was increased an average of 4 beats/min in asymmetric conditions, and by 3·5 beats/min while lifting/lowering to/from the high shelf. Oxygen uptake was increased by 9% when stooped, by 10% when lifting/lowering asymmetrically, and by 8·2% when performing the task to the high shelf. Results of this study indicate that, wherever possible, materials that must be lifted manually in low-seam coal mines be designed in accordance with the decreased lifting capacity exhibited in the kneeling posture.  相似文献   

6.
《Ergonomics》2012,55(9):1013-1031
A series of psychophysical lifting studies was conducted to establish maximum acceptable weights of lift (MAWL) for three supply items commonly handled in underground coal mines (rock dust bags, ventilation stopping blocks, and crib blocks). Each study utilized 12 subjects, all of whom had considerable experience working in underground coal mines. Effects of lifting in four postures (standing, stooping under a 1·5m ceiling, stooping under a l·2m ceiling, and kneeling) were investigated together with four lifting conditions (combinations of lifting symmetry and lifting height). The frequency of lifting was set at four per min, and the task duration was 15?min. Posture significantly affected the MAWL for the rock dust bag (standing MAWL was 7% greater than restricted postures and kneeling MAWL was 6·4% less than stooped); however, posture interacted with lifting conditions for both of the other materials. Physiological costs were found to be significantly greater in the stooped postures compared with kneeling for all materials. Other contrasts (standing versus restricted postures, stooping under 1·5?m ceiling versus stooping under l·2?m ceiling) did not exhibit significantly different levels of energy expenditure. Energy expenditure was significantly affected by vertical lifting height; however, the plane of lifting had little influence on metabolic cost. Recommended acceptable workloads for the three materials are 20·0?kg for the rock dust bag, 16·5?kg for the ventilation stopping block, and 14·7?kg for the crib block. These results suggest that miners are often required to lift supplies that are substantially heavier than psychophysically acceptable lifting limits.  相似文献   

7.
The objective of this study was to determine low-seam mine worker exposure to various postures as they pertain to job classifications and job tasks. Sixty-four mine workers from four low-seam coal mines participated. The mine workers reported the tasks they were required to complete and the two postures they used most frequently to perform them. They were provided with a schematic of postures from which to select. The two postures reported most frequently were identified for each task along with the job classification of the workers performing the tasks. Of the 18 tasks reported, over two thirds were performed by at least two different job classifications and over one third were performed by four or more job classifications. Across tasks, the postures used appeared to vary greatly. However, when grouped by job classification, the most frequently reported posture across all job classifications was kneeling near full flexion. Operating the continuous miner was associated with frequent squatting and was likely used because it affords great mobility, allowing operators to move quickly to avoid hazards. However, for environments with a restricted vertical height such as low-seam mining, the authors recommend squatting be avoided as data demonstrates that large amounts of femoral rollback and high muscle activity for the extensors when performing lateral lifts in this posture. Kneeling near full flexion was reported as the most frequently used posture by all job classifications and was likely due to the fact that it requires the least amount of muscle activity to maintain and has reduced pressures at the knee. However, the authors recommend this posture be avoided when performing lateral lifting tasks. Like squatting, kneeling near full flexion results in increased femoral rollback and may increase the stresses applied to the meniscus. Unlike lateral lifting, maintaining a static posture results in knee loading and muscle activity such that the mine worker should consider kneeling near full flexion and sitting on their heels. Although kneeling near full flexion is associated with injuries, there are benefits to this posture that are realized when statically kneeling (minimal muscle activity, allows worker to maintain an upright torso in low heights, and decreased loading at the knee). However, cartilage is avascular and nourished by synovial fluid. Therefore, one should frequently rotate between postures, assuming a more upright kneeling posture when possible and frequently fully flexing and extending the knee allowing nutrients to the cartilage.Relevance to industryIn 2009, over one fourth of underground coal mines that produced coal in the United States were considered low seam with an average working height of <109.2 cm (MSHA, 2009) restricting workers to their knees. Data exists regarding the biomechanical implications of kneeling postures and demonstrates the possibility of detrimental consequences to varying degrees for each posture. With each posture posing a different level of exposure to musculoskeletal disorder risk factors, it is essential to determine the postures mine workers use to perform their job tasks and how their postural options are restricted by the low-seam underground mining environment.  相似文献   

8.
This study evaluated spinal loads associated with lifting and hanging heavy mining cable in a variety of postures. This electrical cable can weigh up to 10 kg per metre and is often lifted in restricted spaces in underground coal mines. Seven male subjects performed eight cable lifting and hanging tasks, while trunk kinematic data and trunk muscle electromyograms (EMGs) were obtained. The eight tasks were combinations of four postures (standing, stooping, kneeling on one knee, or kneeling on both knees) and two levels of cable load (0 N or 100 N load added to the existing cable weight). An EMG-assisted model was used to calculate forces and moments acting on the lumbar spine. A two-way split-plot ANOVA showed that increased load (p < 0.05) and changes in lifting posture (p < 0.05) independently affected trunk muscle recruitment and spinal loading. The increase in cable load resulted in higher EMG activity of all trunk muscles and increased axial and lateral bending moments on the spine (p < 0.05). Changes in posture caused more selective adjustments in muscle recruitment and affected the sagittal plane moment (p < 0.05). Despite the more selective nature of trunk EMG changes due to posture, the magnitude of changes in spinal loading was often quite dramatic. However, average compression values exceeded 3400 N for all cable lifting tasks.  相似文献   

9.
《Ergonomics》2012,55(5):380-398
This study evaluated spinal loads associated with lifting and hanging heavy mining cable in a variety of postures. This electrical cable can weigh up to 10 kg per metre and is often lifted in restricted spaces in underground coal mines. Seven male subjects performed eight cable lifting and hanging tasks, while trunk kinematic data and trunk muscle electromyograms (EMGs) were obtained. The eight tasks were combinations of four postures (standing, stooping, kneeling on one knee, or kneeling on both knees) and two levels of cable load (0 N or 100 N load added to the existing cable weight). An EMG-assisted model was used to calculate forces and moments acting on the lumbar spine. A two-way split-plot ANOVA showed that increased load (p<0.05) and changes in lifting posture (p<0.05) independently affected trunk muscle recruitment and spinal loading. The increase in cable load resulted in higher EMG activity of all trunk muscles and increased axial and lateral bending moments on the spine (p<0.05). Changes in posture caused more selective adjustments in muscle recruitment and affected the sagittal plane moment (p<0.05). Despite the more selective nature of trunk EMG changes due to posture, the magnitude of changes in spinal loading was often quite dramatic. However, average compression values exceeded 3400 N for all cable lifting tasks.  相似文献   

10.
《Ergonomics》2012,55(8):1289-1310
This article describes investigations of dynamic biomechanical stresses associated with lifting in stooping and kneeling postures. Twelve subjects volunteered to participate in two lifting experiments each having two levels of posture (stooped or kneeling), two levels of lifting height (350 or 700 mm), and three levels of weight (15,20, or 25 kg). One study examined sagitally symmetric lifting, the other examined an asymmetric task. In each study, subjects lifted and lowered a box every 10 s for a period of 2 min in each treatment combination. Electromyography (EMG) of eight trunk muscles was collected during a specified lift. The EMG data, normalized to maximum extension and flexion exertions in each posture, was used to predict compression and shear forces at the L3 level of the lumbar spine. A comparison of symmetric and asymmetric lifting indicated that the average lumbar compression was greater in sagittal plane tasks; however, both anterior-posterior and lateral shear forces acting on the lumbar spine were increased with asymmetric lifts. Analysis of muscle recruitment indicated that the demands of lifting asymmetrically are shifted to ancillary muscles possessing smaller cross-sectional areas, which may be at greater risk of injury during manual materials handling (MMH) tasks. Model estimates indicated increased compression when kneeling, but increased shear forces when stooping. Increasing box weight and lifting height both significantly increased compressive and shear loading on the lumbar spine. A multivariate analysis of variance (MANOVA) indicated complex muscle recruitment schemes—each treatment combination elicited a unique pattern of muscle recruitment. The results of this investigation will help to evaluate safe loads for lifting in these restricted postures.  相似文献   

11.
《Applied ergonomics》2011,42(1):106-113
This study examines stress transmitted to anatomic landmarks of the knee (patella, combined patella tendon and tibial tubercle) while in static kneeling postures without kneepads and while wearing two kneepads commonly worn in the mining industry. Ten subjects (7 male, 3 female) simulated postures utilized in low-seam mines: kneeling in full flexion; kneeling at 90° of knee flexion; and kneeling on one knee while in one of three kneepad states (no kneepads, non-articulated kneepads, and articulated kneepads). For each posture, peak and mean pressure on the anatomic landmarks of the knee were obtained. The majority of the pressure was found to be transmitted to the knee via the combined patellar tendon and tibial tubercle rather than through the patella. While the kneepads tested decreased the maximum pressure experienced at the combined patellar tendon and tibial tubercle, peak pressures of greater than 25 psi were still experienced over structures commonly injured in mining (e.g. bursa sac – bursitis/Miner’s Knee). The major conclusion of this study is that novel kneepad designs that redistribute the stresses at the knee across a greater surface area and to other regions of the leg away from key structures of the knee are needed.  相似文献   

12.
This study examines stress transmitted to anatomic landmarks of the knee (patella, combined patella tendon and tibial tubercle) while in static kneeling postures without kneepads and while wearing two kneepads commonly worn in the mining industry. Ten subjects (7 male, 3 female) simulated postures utilized in low-seam mines: kneeling in full flexion; kneeling at 90° of knee flexion; and kneeling on one knee while in one of three kneepad states (no kneepads, non-articulated kneepads, and articulated kneepads). For each posture, peak and mean pressure on the anatomic landmarks of the knee were obtained. The majority of the pressure was found to be transmitted to the knee via the combined patellar tendon and tibial tubercle rather than through the patella. While the kneepads tested decreased the maximum pressure experienced at the combined patellar tendon and tibial tubercle, peak pressures of greater than 25 psi were still experienced over structures commonly injured in mining (e.g. bursa sac - bursitis/Miner’s Knee). The major conclusion of this study is that novel kneepad designs that redistribute the stresses at the knee across a greater surface area and to other regions of the leg away from key structures of the knee are needed.  相似文献   

13.
An Appreciation     
《Ergonomics》2012,55(10):947-948
Five male subjects were trained to work in non-erect task postures and then shovelled in five task postures: normal erect, under ceilings set at 80 and 60% of normal stature; kneeling without ceiling restraint; and, kneeling under a ceiling set at 80% of kneeling height. The steady-state data for all five task postures were averaged with a resulting heart rate of 131 beats min?1 and an oxygen uptake of 1·41?1 These averaged values compared very well with studies of actual coal miners shovelling in normal working environments  相似文献   

14.
S Kumar  D Garand 《Ergonomics》1992,35(7-8):861-880
Postural and therefore biomechanical standardization in strength testing has not been rigorously and consistently applied. To develop a quantitative relationship between strength and posture (body position, symmetry, and reach) 30 normal subjects (18 male and 12 females) were required to stoop and squat lift or exert in the relevant posture against a standardized instrumented handle. The isometric lifting efforts and isokinetic lifts were studied. The isokinetic lifts were done at a linear velocity of 50cm/s of the hand displacement from the floor to the knuckle heights of the respective subjects in stoop and squat postures. The isometric stoop lifting efforts were exerted in two standardized postures: (a) with 60 degrees hip flexion; and (b) with 90 degrees hip flexion. The isometric squat lifting efforts were also exerted in two standardized postures: (a) with 90 degrees knee flexion; and (b) with 135 degrees knee flexion. All isometric lifting efforts and isokinetic lifts were performed at half, three-quarters, and full horizontal reach in sagitally symmetrical, 30 degrees left lateral, and 60 degrees left lateral planes. Isometric stoop and squat lifting efforts were also measured in self-selected optimal postures. These 56 conditions were tested in random order. The analysis of variance revealed that the gender, the mode of lifting, the postural asymmetry and reach of lifting affected the strength significantly (p less than 0.0001). Most two-way and three-way interactions were significant (p less than 0.01). Of 108 prediction regression equations, 103 were significant with up to 90% of the variation explained by anthropometric variables and sagittal plane strength. The reach affected the strength most profoundly followed by postural asymmetry and the mode of lifting.  相似文献   

15.
Physical and psychophysical differences between working in the stooped and prone postures were compared while performing a simulated agricultural harvesting task for 30 min. Fifteen male subjects participated. The measures used to compare the two postures included perceived discomfort, electromyography (EMG), and heart rate (HR). Average hamstrings localized discomfort (0-10 scale) was 6.17 (SD=2.9) for the stoop posture and 0.67 (SD=1.29) for the prone posture. Erector spinae and hamstring EMG RMS increased 68% and 18%, respectively, while mean power frequency for the hamstrings decreased 13% for the stoop task. Mean power frequency for the middle trapezius muscle decreased in both postures (stoop 4.13%, prone 3.79%). Average heart rate during the last work cycle was 35% greater than the resting heart rate for the stoop posture while average heart rate was 17% greater for the prone posture. Subjects worked on the prone workstation without rest during the 15 min work simulations with less discomfort, no localized fatigue in the back or leg muscles tested, and lower working heart rates than subjects working in the stoop posture.  相似文献   

16.
Loading and unloading of luggage in an aircraft luggage compartment is carried out manually in uncomfortable working position. In this study, the loading work was analysed by surveying musculoskeletal symptoms, by recording the working postures and techniques at work, and by simulating the loading work in a mock-up of a DC-9 aircraft compartment. Low back, knees and shoulders were exposed to mechanical load in luggage handling. Video recordings were used to analyse posture and work technique. In the simulated luggage compartment in the laboratory, ground reaction forces, intra-abdominal pressure (IAP) and electromyography (EMG) signals from back and shoulder muscles were recorded simultaneously. Loading in sitting, squatting and kneeling were the postures that were used the most often. Unloading was generally less stressful than loading, involving less static work. Handling time was shortest when kneeling but knee symptoms were dominant. Lateral ground reaction forces and EMG activity from trapezius were highest when sitting, and IAP peaks were greatest when squatting. Thus each posture had major, though differing, disadvantages and a radical redesign of the DC-9 luggage compartment was clearly indicated.  相似文献   

17.
Traditional sheep shearing methods require workers to adopt postures where the trunk is approximately horizontal and held in that position against gravity for long periods of time. The objective of this study was to examine the biomechanics of stooped shearing techniques and to compare the effectiveness of a new sheep manipulator in reducing the frequency of these postures and the changes in low back forces and electromyographic (EMG) activity. Five male shearers were filmed using three video cameras and EMG and three-dimensional (3D) kinematic data were derived during seven segments of the shearing action. Kinematic data were used to calculate the L5/S1 compressive and shear forces using the 3D Static Strength Prediction Program(TM). Results showed the low back forces in stooped shearing were typically between 2200 and 3000N. Also, the sheep manipulator effectively allowed the shearers to maintain a more upright posture (mean trunk angle >65 degrees) which decreased the compressive (maximum <1350N) and shear (maximum <260N) forces at L5/S1.  相似文献   

18.
《Ergonomics》2012,55(7-8):861-880
Postural and therefore biomechanical standardization in strength testing has not been rigorously and consistently applied. To develop a quantitative relationship between strength and posture (body position, symmetry, and reach) 30 normal subjects (18 male and 12 females) were required to stoop and squat lift or exert in the relevant posture against a standardized instrumented handle. The isometric lifting efforts and isokinetic lifts were studied. The isokinetic lifts were done at a linear velocity of 50cm/s of the hand displacement from the floor to the knuckle heights of the respective subjects in stoop and squat postures. The isometric stoop lifting efforts were exerted in two standardized postures: (a) with 60° hip flexion; and (b) with 90° hip flexion. The isometric squat lifting efforts were also exerted in two standardized postures: (a) with 90° knee flexion; and (b) with 135° knee flexion. All isometric lifting efforts and isokinetic lifts were performed at half, three-quarters, and full horizontal reach in sagitally symmetrical, 30° left lateral, and 60° left lateral planes. Isometric stoop and squat lifting efforts were also measured in self-selected optimal postures. These 56 conditions were tested in random order. The analysis of variance revealed that the gender, the mode of lifting, the postural asymmetry and reach of lifting affected the strength significantly (p<0·0001). Most two-way and three-way interactions were significant (p<0·01). Of 108 prediction regression equations, 103 were significant with up to 90% of the variation explained by anthropometric variables and sagittal plane strength. The reach affected the strength most profoundly followed by postural asymmetry and the mode of lifting.  相似文献   

19.
This study investigates the effect of changes in posture caused by wearing high-heeled shoes on the maximum lifting capacity. Nine female college students, ages 20 to 25 years, participated in this study. Three heel heights (flat, 5 cm and 7.6 cm), two lifting heights (floor to knuckle and knuckle to shoulder), and lifting frequency of 4 per minute were examined. The results indicate that a significant difference exists between MAWOL with flats and that with 7.6 cm heels for both lifting heights. Subjects lifted 21.5% less weight using 7.6 cm heels than wearing flats. No significant difference was found between MAWOL with flats and 5 cm high heels. In addition, in evaluating the tasks subjectively, the subjects reported that they experienced a stress ontheir legs when lifting with 5 cm and 7.6 cm high-heeled shoes. The conclusion of this study indicates that a change in posture affects lifting capacity, and individuals should adjust their predetermined MAWOL while wearing high-heeled shoes.  相似文献   

20.
《Ergonomics》2012,55(7-8):889-898
The objective of this project was to compare the muscular effort exerted during manual lifting tasks performed in standing versus seated posture. Six male undergraduate and graduate students performed 12 different static and dynamic lifts in both sitting and standing positions. During each effort electromyographic (EMG) data were collected on four muscles groups (low back, upper back, shoulder, and abdominals). Four contractions were designed to elicit maximum muscular effort in the four groups being monitored. The remaining data were then expressed as a percentage of maximum EMG. Each subject performed the following: maximum static lift when sitting; maximum static lift when standing; sitting, static lift with 15·9 kg; standing, static lift with 15·9 kg; dynamic sit-forward lift with 15·9 kg, dynamic stand-forward lift with 15·9 kg, dynamic sit-twist with 15·9 kg, dynamic stand-vertical lift with 15·9 kg. Each of the lifts was performed with a wooden tray with slotted handles. Root mean square (RMS) values of the EMG data were calculated for three second periods. EMG activity in the low back, upper back, and shoulder was greater during sitting lifting than during standing lifting. The sit-twist lift resulted in the highest EMG in the abdominal muscles. Dynamic lifts resulted in more muscle activity than did static lifts. From these data it was concluded that sitting-lifting results in greater stress in the low back, upper back, and shoulders than does lifting while standing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号