共查询到20条相似文献,搜索用时 15 毫秒
1.
Eri Yamamoto Reiko Watanabe Takefumi Ichimura Tatsuya Ishida Katsunori Kimura 《Journal of dairy science》2021,104(2):1454-1464
Yogurt is a well-known nutritious and probiotic food and is traditionally fermented from milk using the symbiotic starter culture of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. However, yogurt consumption may cause health problems in lactose-intolerant individuals, and the demand for lactose-free yogurt has been increasing. The standard method to prepare lactose-free yogurt is to hydrolyze milk by lactase; however, this process has been reported to influence the fermentation properties of starter strains. This study aimed to investigate the fermentation properties of an industrial starter culture of L. bulgaricus 2038 and S. thermophilus 1131 in lactose-hydrolyzed milk and to examine the metabolic changes induced by glucose utilization. We found that the cell number of L. bulgaricus 2038, exopolysaccharide concentration, and viscosity in the coculture of L. bulgaricus 2038 and S. thermophilus 1131 was significantly increased in lactose-hydrolyzed milk compared with that in unhydrolyzed milk. Although the cell number of S. thermophilus 1131 showed no difference, production of formic acid and reduction of dissolved oxygen were enhanced in lactose-hydrolyzed milk. Further, in lactose-hydrolyzed milk, S. thermophilus 1131 was found to have increased the expression of NADH oxidase, which is responsible for oxygen reduction. These results indicated that glucose utilization promoted S. thermophilus 1131 to rapidly reduce the dissolved oxygen amount and produce a high concentration of formic acid, presumably resulting in the increased cell number of L. bulgaricus 2038 in the coculture. Our study provides basic information on the metabolic changes in starter strains in lactose-hydrolyzed milk, and demonstrates that lactose-free yogurt with increased cell number of L. bulgaricus can be prepared without delay in fermentation and decrease in the cell number of S. thermophilus. 相似文献
2.
R. Yamauchi E. Maguin H. Horiuchi M. Hosokawa Y. Sasaki 《Journal of dairy science》2019,102(2):1033-1043
The protocooperation between Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus relies on metabolite exchanges that accelerate acidification during yogurt fermentation. Conflicting results have been obtained in terms of the effect of the Strep. thermophilus urease and the NH3 and CO2 that it generates on the rate of acidification in yogurt fermentation. It is difficult to perform a systematic study of the effects of urease on protocooperation because it is necessary to distinguish among the direct, indirect, and strain-specific effects resulting from the combination of the strains of both species. To evaluate the direct effects of urease on protocooperation, we generated 3 urease-deficient mutants (ΔureC) of fast- and slow-acidifying Strep. thermophilus strains and observed the effects of NH3 or CO2 supplementation on acidification by the ΔureC strains. Further, we examined 5 combinations of 3 urease-deficient ΔureC strains with 2 CO2-responsive or CO2-unresponsive strains of L. bulgaricus. Urease deficiency induced a shortage of ammonia nitrogen and CO2 for the fast- and slow-acidifying Strep. thermophilus and for the CO2-responsive L. bulgaricus, respectively. Notably, the shortage of ammonia nitrogen had more severe effects than that of CO2 on yogurt fermentation, even if coculture with L. bulgaricus masked the effect of urease deficiency. Our work established (1) that urease deficiency inhibits the fermentative acceleration of protocooperation regardless of the Strep. thermophilus and L. bulgaricus strain combinations, and (2) that urease is an essential factor for effective yogurt acidification. 相似文献
3.
4.
Influence of casein hydrolysates on exopolysaccharide synthesis by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus 下载免费PDF全文
Qingli Zhang Bao Yang Mindy M Brashears Zhimin Yu Mouming Zhao Ning Liu Yinjuan Li 《Journal of the science of food and agriculture》2014,94(7):1366-1372
5.
Effect of 'ropy' strains of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus on rheology of stirred yogurt 总被引:3,自引:0,他引:3
Helen L. Rawson & Valerie M. Marshall 《International Journal of Food Science & Technology》1997,32(3):213-220
The TA-TX2 Texture Analyser and the Brookfield RVT Viscometer have been used to investigate the contribution of ropiness to the texture of stirred yogurts made using ropy strains of bacteria. Back extrusion and texture profile analysis, not commonly used to quantify rheological properties of semi-solid foods, have been found useful in distinguishing the contribution of exopolysaccharides to different texture attributes (Toba et al ., 1990). Thus ropiness, a characteristic which is imparted to the product as a result of fermentation with particular polysaccharide-producing strains, contributes to 'adhesiveness', while 'firmness' and 'elasticity' are likely to be influenced more by the protein matrix of the yogurt than by secretion of the polysaccharide by the ropy strains. Effects on viscosity and ability to recover viscosity after disruption were apparent, although the contribution of ropiness was not always positive. Ropy strains increased viscosity of stirred yogurts when compared to yogurt made with non-ropy cultures. But, whilst a ropy Lactobacillus delbrueckii ssp. bulgaricus (Lb r+ ) combined with a non-ropy Streptococcus thermophilus (St r− ) produced a viscous product which recovered its viscosity well, a yogurt made by combining both ropy strains did not recover its viscosity as well as yogurt made by combining two non-ropy cultures and lost its structure more rapidly during the destructive testing. These results show therefore that inclusion of a ropy strain will not always lead to improved texture attributes, that while ropy strains may increase viscosity they may not influence 'firmness' and lend support to the view that this latter attribute is more influenced by protein–protein interactions. 相似文献
6.
Streptococcus thermophilus SDMCC18 contains a novel bi-functional glutathione synthetase gene gshF, and it can produce glutathione (GSH). In the present study, we demonstrated that the produced GSH by S. thermophilus SDMCC18 could protect cells against acid challenge and be secreted into the medium. Moreover, using a gshF-defective mutant strain as the control, we found that the GSH conferred a protective role against acid stress to Lactobacillus delbrueckii subsp. bulgaricus ATCC11842. In addition, L. bulgaricus ATCC11842 could import the exogenous GSH into the cytoplasm, leading to an improved growth of strain ATCC11842. Taken together, our study reported a novel proto-cooperation relationship between S. thermophilus and L. bulgaricus in yoghurt fermentation. 相似文献
7.
The effect of a plant extract (prepared from olive, garlic, onion and citrus with sodium acetate as a carrier) on the viability of yogurt starter cultures was studied. Nonfat yogurt was prepared with various levels of supplements: plant extract (0, 0.5 or 1.0%, w/v) or l-cysteine HCl (0.014 or 0.028%, w/w). Microbial and physicochemical analyses were conducted weekly for 50 days. Fermentation time increased for supplemented yogurts compared with the non-supplemented yogurt. Lactobacillus bulgaricus counts in supplemented yogurts were >6 log cfu mL?1 for a longer time (7–21 days) compared with the non-supplemented yogurt. Streptococcus thermophilus counts in all yogurts were > 6 log cfu mL?1 throughout the storage. Overall, redox potential and titratable acidity of yogurts on day 50 were greater compared with day 1, but pH and syneresis were less. Plant extract at 0.5% enhanced L. bulgaricus viability in nonfat yogurt while least affecting the physicochemical characteristics. 相似文献
8.
Makino S Ikegami S Kano H Sashihara T Sugano H Horiuchi H Saito T Oda M 《Journal of dairy science》2006,89(8):2873-2881
The extracellular polysaccharides (EPS) produced by lactic acid bacteria (LAB) are associated with the rheology, texture, and mouthfeel of fermented milk products, including yogurt. This study investigated the immunomodulatory effects of EPS purified from the culture supernatant of Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) OLL1073R-1. The crude EPS were prepared from the culture supernatant of L. bulgaricus OLL1073R-1 by standard chromatographic methods, and were fractionated into neutral EPS and acidic EPS (APS). Acidic EPS were further fractionated into high molecular weight APS (H-APS) and low molecular weight APS (L-APS). High molecular weight APS were shown to be phosphopolysaccharides containing D-glucose, D-galactose, and phosphorus. Stimulation of mouse splenocytes by H-APS significantly increased interferon-γ production, and, moreover, orally administered H-APS augmented natural killer cell activity. Oral administration of yogurt fermented with L. bulgaricus OLL1073R-1 and Streptococcus thermophilus OLS3059 to mice showed a similar level of immunomodulation as H-APS. However, these effects were not detected following administration of yogurt fermented with the starter combination of L. bulgaricus OLL1256 and S. thermophilus OLS3295. We conclude from these findings that yogurt fermented with L. bulgaricus OLL1073R-1, containing immunostimulative EPS, would have an immunomodulatory effect on the human body. 相似文献
9.
Nineteen bacteriological media were evaluated to assess their suitability to selectively enumerate Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus acidophilus, bifidobacteria, and propionibacteria. Bacteriological media evaluated included Streptococcus thermophilus agar, pH modified MRS agar, MRS-vancomycine agar, MRS-bile agar, MRS-NaCl agar, MRS-lithium chloride agar, MRS-NNLP (nalidixic acid, neomycin sulfate, lithium chloride and paramomycine sulfate) agar, reinforced clostridial agar, sugar-based (such as maltose, galactose, sorbitol, manitol, esculin) media, sodium lactate agar, arabinose agar, raffinose agar, xylose agar, and L. casei agar. Incubations were carried out under aerobic and anaerobic conditions at 27, 30, 37, 43, and 45 degrees C for 24, 72 h, and 7 to 9 d. S. thermophilus agar and aerobic incubation at 37 degrees C for 24 h were suitable for S. thermophilus. L. delbrueckii ssp. bulgaricus could be enumerated using MRS agar (pH 4.58 or pH 5.20) and under anaerobic incubation at 45 degrees C for 72 h. MRS-vancomycine agar and anaerobic incubation at 43 degrees C for 72 h were suitable to enumerate L. rhamnosus. MRS-vancomycine agar and anaerobic incubation at 37 degrees C for 72 h were selective for L. casei. To estimate the counts of L. casei by subtraction method, counts of L. rhamnosus on MRS-vancomycine agar at 43 degrees C for 72 h under anaerobic incubation could be subtracted from total counts of L. casei and L. rhamnosus enumerated on MRS-vancomycine agar at 37 degrees C for 72 h under anaerobic incubation. L. acidophilus could be enumerated using MRS-agar at 43 degrees C for 72 h or Basal agar-maltose agar at 43 degrees C for 72 h or BA-sorbitol agar at 37 degrees C for 72 h, under anaerobic incubation. Bifidobacteria could be enumerated on MRS-NNLP agar under anaerobic incubation at 37 degrees C for 72 h. Propionibacteria could be enumerated on sodium lactate agar under anaerobic incubation at 30 degrees C for 7 to 9 d. A subtraction method was most suitable for counting propionibacteria in the presence of other lactic acid bacteria from a product. For this method, counts of lactic bacteria at d 3 on sodium lactate agar under anaerobic incubation at 30 degrees C were subtracted from counts at d 7 of lactic bacteria and propionibacteria. 相似文献
10.
This study investigated the influence of incorporating Raftiline HP on the pH, growth, proteolytic, and angiotensin-I converting enzyme inhibitory activities and on spontaneous whey separation, firmness, and rheological properties of low-fat yogurts during storage for 28 d at 4 degrees C. Three types of yogurts were prepared from skim milk containing 0% (YI0, control), 2% (YI2), and 3% (YI3) Raftiline HP, respectively. The incorporation of Raftiline HP improved the growth of starter organisms, particularly that of Lactobacillus delbrueckii ssp. bulgaricus, resulting in shorter fermentation time. There was a significant improvement in total proteolysis, which was highest in yogurt containing 3% Raftiline HP. The ACE inhibitory activity was maximal in YI3 compared to YI2 and YI0. Incorporation of Raftiline HP did not affect whey separation and firmness of the low-fat yogurts. All these products were more fluid like with distinct pseudoplastic properties and lesser ability to resist deformation upon applied shear. 相似文献
11.
保加利亚乳杆菌与嗜热链球菌共生机理的研究进展 总被引:1,自引:0,他引:1
乳酸菌在乳中的共生机制是非常复杂的网络体系。通过对蛋白质代谢、核苷酸碱基代谢、氧化性应激以及碳源物质代谢等方面的研究,对保加利亚乳杆菌与嗜热链球菌共生机理的研究进展进行详细的阐述。旨在为发酵剂菌体的筛选及应用提供参考。 相似文献
12.
Crude cellular extracts (CCEs) containing active β-galactosidase from Lactobacillus delbrueckii ssp. bulgaricus 11842 were spray-dried at three different outlet air temperatures (45, 55 or 65°C) or freeze-dried, with or without whey proteins, casein, whey or skim milk as drying adjuncts. The use of whey or skim milk resulted in significantly ( P < 0.05) higher β-galactosidase activity retention in comparison to all other CCEs. This effect was not related to the initial total solids (TS) content (4–10%) of the feedstock solutions, but was presumably caused by the presence of lactose in the whey or skim milk CCE preparations. 相似文献
13.
为探究具有不同优良性状的嗜热链球菌株与保加利亚乳杆菌株共发酵的特性,用产酸快的嗜热链球菌StCH-1菌株和产黏好的嗜热链球菌StTA040菌株与保加利亚乳杆菌Lb0925B菌株组合,测定其组合菌株的发酵性能。通过实验发现组合菌株发酵速率均比单菌株发酵速率快,其中含有嗜热链球菌StCH-1的组合菌株发酵速率较快,而含有嗜热链球菌StTA040的组合菌株的胞外多糖产量较高,发酵乳的黏度较高,持水力较强;三组分发酵剂的发酵速率快,发酵乳在贮藏期间黏度高,持水力强,通过感官分析得出三组分发酵剂制得的发酵乳的口感和风味最佳。 相似文献
14.
Yoghurt and starter culture producers are still searching strains of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus to produce healthier yogurt with longer shelf life, better texture, taste and quality. However, selective identification of Lb. delbrueckii subsp. bulgaricus and Strep. thermophilus from a mixed population using microbiological and biochemical methods is difficult, time consuming and may not be accurate. In this study, a quick, sensitive and accurate method is proposed to identify both Lb. delbrueckii subsp. bulgaricus and Strep. thermophilus using PCR. The method is comprised of two parts. In the first part, methionine biosynthesis genes, known to be present in both species were partially amplified by designed primers (cysmet2F and cysmet2R). Partial amplification of the methionine biosynthesis gene which gives 700 bp fragment resulted in selective identification of Lb. bulgaricus and Strep. thermophilus. All 16 Lb. bulgaricus and 6 Strep. thermophilus isolates assessed by this method gave the expected amplification. On the other hand, further analysis of other closely related species with the same primers have indicated that the same product was also amplified in two more lactobacilli namely, Lb. delbrueckii subsp. lactis and Lb. helveticus species. Thus, in the second part of the method, further differentiation of Lb. delbrueckii subsp. bulgaricus and Strep. thermophilus from each other and these species was achieved using restriction analysis of 16S rRNA gene with EcoRI. 相似文献
15.
16.
The rheological and physical characteristics of non-fat set yogurt produced using co-cultures of ropy EPS-producing Streptococcus thermophilus S3.3 and Lactobacillus delbrueckii subsp. bulgaricus LTM and of Streptococcus thermophilus S3.3 and Lactobacillus delbrueckii subsp. bulgaricus H+-ATPase-defective mutant L6 under different conditions were studied. Yogurts produced with mutant L6 had a higher pH and water-holding capacity and better textural properties compared to those produced with the LTM strain. The highest storage modulus (G′) and thixotropic loops were found for yogurt made with L6 at 42°C on day 21 of cold storage. This yogurt contained a network of thick, continuous protein aggregates and large void spaces. 相似文献
17.
采用置片法和菌落计数法对嗜热链球菌(Streptococcus thermophilus)和保加利亚乳杆菌(Lactobacillus bulgaricus)在不同载体表面(椰果粒、不锈钢网布、塑料片、陶瓷片和玻璃片)上形成生物膜的能力进行研究。结果表明:椰果粒和不锈钢网布是适宜乳酸菌单菌生物膜形成的载体,培养7d椰果粒和不锈钢网布上的单菌生物膜初始菌密度可达107CFU/cm2,并且在后续培养中能稳定在3.2×106CFU/cm2左右;混菌生物膜菌密度连续7d稳定在1×107CFU/cm2左右。利用扫描电镜对S. thermophilus和L. bulgaricus形成的混菌生物膜进行观察,结果表明在椰果粒和不锈钢网布表面上S. thermophilus和L. bulgaricus形成典型的混菌生物膜结构。 相似文献
18.
Qingli Zhang Jiaoyan Ren Haifeng Zhao Mouming Zhao Jiaoyun Xu Qiangzhong Zhao 《International Journal of Food Science & Technology》2011,46(5):1014-1020
The growth performance of Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) and Streptococcus thermophilus (S. thermophilus) was determined in the presence of casein hydrolysates produced by the action of five proteolytic enzymes (Alcalase, Flavorzyme, Neutrase, Papain and Trypsin) with various degrees of hydrolysis (DH). In addition, these five kinds of casein hydrolysates were fractionated by ultrafiltration and the influence of the amino acid composition of the peptides on the growth and lactic acid yield of yoghurt lactic acid bacteria (LAB) was studied. The results showed that the ultrafiltered fraction (<3000 Da) was the determinant stimulator in crude hydrolysates. Furthermore, the hydrophilic amino acid residua including His, Lys, Glu and Ser were beneficial for bacterial growth. Compared with control, the cell growth and lactic acid yield of yoghurt LAB were increased with the supplementation of the peptides fraction (<3000 Da) produced with papain by 65.1% and 49.6%, respectively. 相似文献
19.
辐射前后5d用含保加利亚乳杆菌和嗜热链球菌活菌的酸奶添加于饲料中饲喂小鼠,比较接受2Gy辐射小鼠的体重、胸腺细胞重量、腹膜巨噬细胞吞噬活性和脾淋巴细胞计数等指标,发现摄入添加酸奶饲料的处理小鼠与普通饲料对照组有显著的差异,证明饲喂酸奶对辐射后小鼠产生了保护作用,减轻其体重下降、胸腺重下降和淋巴细胞计数,提高其巨噬细胞吞噬活性。 相似文献
20.
分析测定了从某直投式发酵剂中分离的两株嗜热链球菌(Streptococcus thermophilus)S.t S1、S.t R1和一株保加利亚乳杆菌(Lactobacillus delbrueckii subsp.bulgaricus)L.bL1的发酵性能,并将球菌与杆菌以不同比例组合发酵,比较酸奶发酵时间、粘度、乳清析出、后酸化和感官评价差异。结果表明,嗜热链球菌S.tS1生长速度略慢于S.tR1,酸化速度相当,但S.tS1的胞外多糖产量和发酵乳粘度明显高于S.tR1,保加利亚乳杆菌L.bL1的上述性能均比两株球菌差。S.tS1与L.bL1菌株以100:1的比例进行组合发酵时,粘度达0.549Pa·s;乳清析出仅2.5mL/10g;4℃冷藏保存15d后,酸度上升12°T,酸奶产品各项指标优于其他菌株组合。菌株性能和组合方式对酸奶产品的品质具有显著的影响。 相似文献