首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
《Journal of dairy science》2021,104(12):12871-12880
Susceptibility to mastitis is highest during the peripartal (transition) period and is often concomitant with other comorbidities such as ketosis. Although infection with pathogenic microorganisms and immune-dysfunction around calving clearly play key roles in mastitis development, other metabolic factors also contribute. Sirtuin 3 (SIRT3), a mitochondrial deacetylase regulating energy and redox homeostasis, antagonizes the lipotoxic effects of nonesterified fatty acids (NEFA). Thus, we hypothesized that increases in circulating NEFA concentrations, as observed in the transition period, provokes inflammatory responses that can be reversed via activation of SIRT3. Here we aimed to study (1) proinflammatory NF-κB signaling and SIRT3 abundance in mammary tissue of ketotic cows and healthy controls, and (2) the effect of SIRT3 on NF-κB activation in bovine mammary epithelial cells (BMEC) treated with high levels of NEFA. The mammary gland biopsy samples were from a previous study, which included 15 healthy cows and 15 ketotic cows. Primary BMEC were isolated from 3 healthy Holstein cows with collagenase III digestion. Purified BMEC were incubated with or without SIRT3 overexpression adenovirus for 48 h, then treated with 0, 0.6, 1.2, or 2.4 mM NEFA for 24 h. Mammary tissue of ketotic cows was associated with lower protein abundance of SIRT3 along with greater NF-κB P65 phosphorylation levels (p-NF-κB P65), p-NF-κB P65:NF-κB P65 ratio, and mRNA abundance of IL1B and IL6. In BMEC, exogenous NEFA dose-dependently reduced protein abundance of SIRT3, but increased p-NF-κB P65, p-NF-κB P65:NF-κB P65 ratio, and mRNA abundance of IL1B and IL6. Compared with green fluorescent protein adenovirus vector + NEFA, overexpression of SIRT3 in NEFA-treated BMEC downregulated p-NF-κB P65 and mRNA abundance of IL1B and IL6. Immunofluorescence indicated that overexpression of SIRT3 inhibited nuclear translocation of NF-κB P65. Overall, our data demonstrated that ketosis is associated with a reduction in SIRT3 abundance and activation of NF-κB signaling in the mammary gland. In vitro data provided evidence that high NEFA concentrations inhibit SIRT3, which contributes to enhanced NF-κB signaling including nuclear translocation and a pro-inflammatory response. The data suggest a promising role of SIRT3 as a target for helping alleviate localized inflammation of the mammary gland resulting from exposure to high concentrations of NEFA.  相似文献   

2.
3.
《Journal of dairy science》2021,104(11):12094-12104
Insulin-like growth factor-1 (IGF-1) plays a key role in proliferation and galactopoiesis in mammary epithelial cells (MEC), but its definitive functions on endoplasmic reticulum (ER) during protein synthesis remain unknown. The present study aimed to elucidate the effects of IGF-1 on ER biogenesis in MEC in vitro and examined the expression of ER biogenesis-associated genes in the mammary gland during early lactation. We treated mammary alveolar cells–large T antigen cells (immortalized bovine MEC line established via stable transfection with simian virus-40 large T-antigen) with IGF-1 and examined ER biogenesis using the fluorescence intensity of an ER tracker and quantitative real-time PCR. We found IGF-1 significantly increased ER tracker staining and upregulated mRNA levels of ER biogenesis-related genes, such as CHKA (choline kinase α), PCYT1A (choline-phosphate cytidylyltransferase A), and SURF4 (surfeit locus protein 4). We focused on unfolded protein response to explore molecular mechanisms by which IGF-1 induces ER biogenesis. We found IGF-1 significantly increased mRNA levels of the XBP1 splicing form (XBP1s). Based on western blot analysis, IGF-1 induced the expression of (inositol-requiring kinase 1 α) protein, upstream of XBP1s, and phosphorylated-IRE1α. The inhibition of IRE1 endoribonuclease activity with 4-methylumbelliferone 8-carbaldehyde (4μ8C) significantly suppressed the increase in ER tracker fluorescence and ER biogenesis-related gene expression induced by IGF-1. Also, IGF-1–induced XBP1s and ER biogenesis-associated gene expression was inhibited by rapamycin, an inhibitor of mTORC1 (mammalian target of rapamycin complex 1), indicating that IRE1-XBP1 activation by IGF-1 is mediated by mTORC1. Moreover, to clarify the expression of XBP1s and ER biogenesis-associated genes expression under normal physiological conditions, mammary gland tissue from biopsies of dairy cows during late gestation and lactation were analyzed. In vivo data highlighted the significant increases in the mRNA levels of XBP1s and ER biogenesis-related genes in mammary gland tissue immediately after calving through 6 wk of lactation. The mRNA levels of IGF1R (IGF-1 receptor) in mammary glands increased during 6 wk of lactation. Therefore, the present study indicated for the first time that IGF-1 induces ER biogenesis by activating the IRE1-XBP1 axis under the regulation of mTORC1 in bovine MEC line.  相似文献   

4.
Essential amino acids (EAA) play an important role in promoting milk protein synthesis in primary bovine mammary epithelial cells (BMEC). However, the regulatory mechanisms involved in the relationship between EAA and milk protein synthesis have not been fully explored. This study examined the effects of seryl-tRNA synthetase (SARS) on EAA-stimulated β-casein synthesis, cell proliferation, and the mammalian target of rapamycin (mTOR) system in BMEC. First, BMEC were cultured in medium either lacking all EAA (?EAA) or that included all EAA (+EAA) for 12 h. The BMEC were then supplemented with the opposing treatments (?EAA supplemented with +EAA and vice versa) for 0 h, 10 min, 0.5 h, 1 h, 6 h, or 12 h, respectively. After the treatment-specific time allotment, proteins were collected for Western blotting. Subsequently, a 2 × 2 factorial design was used to evaluate the interactive of SARS inhibition (control or SARS inhibited) and EAA supply (+EAA or –EAA) on gene and protein abundance, cell viability, and cell cycle in BMEC. Based on the data obtained in the first experiment, the changes in protein abundance of β-casein and SARS depended on EAA treatment time in similar patterns. The protein abundance of β-casein, SARS, and mammalian target of rapamycin (mTOR)-related proteins, cell viability, cell cycle progression, and the mRNA abundance of cyclin D1 (CCND1, cell cycle progression marker) and marker of proliferation Ki-67 (MKI67, cell proliferation marker) were stimulated by the presence of EAA. Correspondingly, when cells were deprived of EAA, cell proliferation and abundance of these proteins and genes were reduced overall. Moreover, the decreases in these aspects were further exacerbated by inhibiting SARS, suggesting that an interaction between EAA and SARS is important for regulating protein synthesis. The results indicated that SARS stimulated the mTOR signaling pathway when EAA were present, enhanced EAA-stimulated cell proliferation, and contributed to increased β-casein production in BMEC.  相似文献   

5.
Antimicrobial peptides are a common defense against bacterial infections in many species and a significant part of the innate immune response of the bovine mammary gland. The objective of this study was to investigate the influence of epigenetic factors on vitamin D and toll-like receptor–mediated induction of β-defensins in mammary epithelial cells. Primary bovine mammary epithelial cells were treated with lipopolysaccharide (LPS, 0 or 100 ng/mL), 1,25-dihydroxyvitamin D3 [1,25(OH)2D3, 0 or 10 nM], and 5-aza-2′-deoxycytidine (5-Aza, inhibitor of DNA methyltransferase, 0 or 5 μM) or trichostatin A (TSA, inhibitor of histone deacetylase, 0 or 80 nM) in a factorial arrangement. Effects of treatments on β-defensin gene expression along with genes for cytokines and enzymes known to be induced by LPS or 1,25(OH)2D3 were evaluated by quantitative PCR. The LPS treatment induced expression of β-defensin (DEFB)3, DEFB5, DEFB7, DEFB10, enteric β-defensin (EBD), lingual antimicrobial peptide (LAP), and tracheal antimicrobial peptide (TAP); whereas, the 1,25(OH)2D3 treatment increased DEFB5 and DEFB7 expression and decreased LAP. The 5-Aza treatment increased expression of DEFB3, DEFB5, DEFB10, EBD, LAP, and TAP in the presence and absence of LPS. The TSA treatment increased expression of DEFB3, DEFB4, DEFB5, DEFB7, and DEFB10 in the absence of LPS but decreased LPS-induced expression of and LAP and TAP. Together these results indicate that β-defensin expression in bovine mammary epithelial cells is likely influenced by DNA methylation and histone acetylation. Investigation of environmental and nutritional factors that influence epigenetic control of β-defensins in the mammary gland may be beneficial for improving resistance to intramammary infections.  相似文献   

6.
The anti-inflammatory effects of extracts of the seaweed Sargassum macrocarpum (SME) in bone marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs) were investigated. Primary BMDMs and BMDCs were used for cytokine production and western blot analysis. SME (0–50 μg/mL) pre-treatment resulted in a strong inhibitory effect against interleukin (IL)-12 p40, IL-6, and tumor necrosis factor (TNF)-α production in CpG-stimulated BMDMs and BMDCs. SME pre-treatment caused a strong inhibitory effect against NF-κB activation, as evaluated using degradation of IκBα and the NF-κB reporter gene assay. SME has significant anti-inflammatory properties and warrants further study regarding potential use as a medicinal food.  相似文献   

7.
8.
9.
10.
11.
《Journal of dairy science》2017,100(8):6676-6688
Amino acids are the building blocks of proteins and serve as key molecular components upstream of the signaling pathways that regulate protein synthesis. The objective of this study was to systematically investigate the effect of essential AA ratios on milk protein synthesis in vitro and to elucidate some of the underlying mechanisms. Triplicate cultures of MAC-T cells and bovine mammary tissue explants (MTE) were incubated with the optimal AA ratio (OPAA; Lys:Met, 2.9:1; Thr:Phe, 1.05:1; Lys:Thr, 1.8:1; Lys:His, 2.38:1; and Lys:Val, 1.23:1) in the presence of rapamycin (control), OPAA, a Lys:Thr ratio of 2.1:1, a Lys:Thr ratio of 1.3:1, a Lys:His ratio of 3.05:1, or a Lys:Val ratio of 1.62:1 for 12 h; the other AA concentrations were equal to OPAA. In some experiments, the cells were cultured with OPAA with or without rapamycin (100 ng/mL) or with mammalian target of rapamycin (mTOR) small interference RNA, and the MTE were exposed to OPAA with rapamycin for β-casein expression. Among the treatments, the expression of β-casein was greatest in the MTE cultured with OPAA. In MAC-T cells, the OPAA upregulated the mRNA expression of SLC1A5 and SLC7A5 but downregulated the expression of IRS1, AKT3, EEF1A1, and EEF2 compared with the control. The OPAA had no effect on the mTOR phosphorylation status but increased the phosphorylation of S6K1 and RPS6. When the MTE were treated with rapamycin in the presence of OPAA, the expression of β-casein was markedly decreased. The phosphorylation of RPS6 and 4EBP1 also was reduced in MAC-T cells. A similar negative effect on the expression of RPS6KB1 and EIF4EBP1 was detected when the cells were cultured with either rapamycin or mTOR small interference RNA. The optimal AA ratio stimulated β-casein expression partly by enhancing the transport of AA into the cells, cross-talk with insulin signaling and a subsequent enhancement of mTOR signaling, or translation elongation in both MAC-T cells and bovine MTE.  相似文献   

12.
13.
In rodents, peroxisome proliferator-activated receptor-γ (PPARG) plays a crucial role in fatty acid (FA) metabolism through regulation of gene expression, including stearoyl-coenzyme A desaturase (SCD), which is the rate-limiting enzyme for the biosynthesis of monounsaturated FA. However, whether or how PPARG regulates the activity of mammary SCD in ruminants is unknown. This study explored the potential role of PPARG isoforms in regulating SCD mRNA expression in lactating goat mammary epithelial cells (GMEC). Using quantitative real-time PCR, we observed a positive correlation between PPARG and SCD expression in the goat mammary gland at peak lactation. Overexpression of both PPARG1 and PPARG2 in GMEC increased markedly the expression of SCD, the concentration of 16:1 and 18:1, and the desaturation indices of 16:1 and 18:1. The PPARG ligand rosiglitazone further increased SCD expression and desaturation indices in GMEC, overexpressing PPARG1 and PPARG2. Incubation with rosiglitazone alone increased the expression of SCD, but did not alter the concentration of 16- to 18-carbon FA or their desaturation indices. The results provide evidence that PPARG regulates the expression and activity of SCD in GMEC. As such, PPARG may contribute to regulation of SCD and monounsaturated FA synthesis during lactation.  相似文献   

14.
In cattle, the kidney has been the only known site for production of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] from 25-hydroxyvitamin D3 [25(OH)D3] by 1α-hydroxylase (1α-OHase). Based on human studies, it was hypothesized that bovine monocytes could produce 1,25(OH)2D3 upon activation and 1,25(OH)2D3 would regulate expression of vitamin D-responsive genes in monocytes. First, the effects of 1,25(OH)2D3 on bovine monocytes isolated from peripheral blood were tested. Treatment of nonstimulated monocytes with 1,25(OH)2D3 increased expression of the gene for the vitamin D 24-hydroxylase (24-OHase) enzyme by 51 ± 13 fold, but 1,25(OH)2D3 induction of 24-OHase expression was blocked by lipopolysaccharide (LPS) stimulation. In addition, 1,25(OH)2D3 increased the gene expression of inducible nitric oxide synthase and the chemokine RANTES (regulated upon activation, normal T-cell expressed and secreted) in LPS-stimulated monocytes 69 ± 13 and 40 ± 12 fold, respectively. Next, the ability of bovine monocytes to express 1α-OHase and produce 1,25(OH)2D3 was tested. Activation of monocytes with LPS, tripalmitoylated lipopeptide (Pam3CSK4), or peptidoglycan caused 43 ± 9, 17 ± 3, and 19 ± 3 fold increases in 1α-OHase gene expression, respectively. Addition of 25(OH)D3 to LPS-stimulated monocytes enhanced expression of inducible nitric oxide synthase and RANTES and nitric oxide production in a dose-dependent manner, giving evidence that activated monocytes convert 25(OH)D3 to 1,25(OH)2D3. In conclusion, bovine monocytes produce 1,25(OH)2D3 in response to toll-like receptor signaling, and 1,25(OH)2D3 production in monocytes increased the expression of genes involved in the innate immune system. Vitamin D status of cattle might be important for optimal innate immune function because 1,25(OH)2D3 production in activated monocytes and subsequent upregulation of inducible nitric oxide synthase and RANTES expression was dependent on 25(OH)D3 availability.  相似文献   

15.
Food Science and Biotechnology - One of the interfering factors in Coronavirus disease 2019 (COVID-19) is the cytokine storm, which contributes to hyperinflammation. Mast cells cause COVID-19...  相似文献   

16.
17.
18.
Nagappan A  Park KI  Park HS  Kim JA  Hong GE  Kang SR  Lee do H  Kim EH  Lee WS  Won CK  Kim GS 《Food chemistry》2012,135(3):1920-1928
Ascorbic acid (vitamin C) is an essential component of most living cells. Apart from antioxidant activity, it has been reported to inhibit cancer cell growth in vitro in human cancer cells. However, the cellular mechanism underlying anticancer activity has not been fully elucidated. In this study, vitamin C showed a cytotoxic effect on human gastric cancer cell line AGS (LD50 300μg/ml). Further, flow cytometry analysis showed that vitamin C increased the sub-G1 (apoptosis) population and apoptosis confirmed by fluorescein isothiocyanate-Annexin V double staining in AGS cells. Moreover, specific immuno-blotting revealed the expression of the phosphorylated form of Bad (S136), 14-3-3σ, pro-caspases-3, -6, -8, and-9 protein levels were significantly decreased and Bax/Bcl-xL ratio was increased in a dose-dependent manner. Also, wound healing assay results showed that vitamin C inhibited AGS cell proliferation. These findings suggest that vitamin C induces apoptosis and might be a potential therapeutic agent for gastric cancer.  相似文献   

19.
Food Science and Biotechnology - The accumulation of reactive α-dicarbonyl leading to advanced glycation end products (AGEs) have been linked to pathophysiological diseases in many studies,...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号