首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Processing and characterization of a model functionally gradient material   总被引:3,自引:0,他引:3  
A technique for preparing model Functionally Gradient Materials (FGM) using polyester resin and cenospheres is developed. The cenosphere volume fraction in the polyester matrix is continuously varied through a buoyancy assisted casting process. FGMs having cenosphere volume fraction varying from 0 to 0.45 over a length of 250 mm are prepared. The overall properties of the FGM are varied by adding plasticizer to the polyester matrix. The physical, elastic and fracture properties of the prepared FGMs are evaluated as a function of location to generate the property profiles. The results of the material characterization indicate that, the quasi-static and dynamic modulus of the material increases and the material density decreases in the direction of increasing cenosphere volume fraction. The quasi-static fracture toughness increases up to a certain volume fraction of cenospheres and then decreases. Fractographic analyses of the fractured specimens indicate a change in the fracture mechanism as the cenosphere volume fraction increases. Estimate of the composite modulus using the Halpin-Tsai model with porosity correction matches closely with the test results.  相似文献   

2.
为了模拟功能梯度材料(FGM)在工程应用中可能会出现的断裂问题并计算相应的开裂载荷,通过编写用户自定义UEL子程序将梯度扩展单元嵌入到ABAQUS软件中模拟功能梯度材料的物理场,并编写交互能量积分后处理子程序计算裂纹尖端的混合模式应力强度因子(SIF),采用最大周向应力准则编写子程序计算裂纹的偏转角,并模拟了裂纹扩展路径,计算了裂纹的起裂载荷。讨论了材料梯度参数对裂纹扩展路径以及起裂载荷的影响规律。通过与均匀材料的对比,验证了功能梯度材料断裂性能的优越性。研究表明:外载平行于梯度方向时,垂直梯度方向的初始裂纹朝着等效弹性模量小的方向扩展,且偏转角在梯度指数线性时出现峰值,并随着组分弹性模量比的增加而变大;当外载和初始裂纹均平行于梯度方向时,材料等效弹性模量和断裂韧性的增加或者梯度指数的减小都导致起裂载荷变大。  相似文献   

3.
Summary The dynamic response of a finite crack in an unbounded Functionally Graded Material (FGM) subjected to an antiplane shear loading is studied in this paper. The variation of the shear modulus of the functionally graded material is modeled by a quadratic increase along the direction perpendicular to the crack surface. The dynamic stress intensity factor is extracted from the asymptotic expansion of the stresses around the crack tip in the Laplace transform plane and obtained in the time domain by a numerical Laplace inversion technique. The influence of graded material property on the dynamic intensity factor is investigated. It is observed that the magnitude of dynamic stress intensity factor for a finite crack in such a functionally graded material is less than in the homogeneous material with a property identical to that of the FGM crack plane.  相似文献   

4.
The dynamic fracture of functionally graded materials (FGMs) is modeled using an explicit cohesive volumetric finite element scheme that incorporates spatially varying constitutive and failure properties. The cohesive element response is described by a rate-independent bilinear cohesive failure model between the cohesive traction acting along the cohesive zone and the associated crack opening displacement. A detailed convergence analysis is conducted to quantify the effect of the material gradient on the ability of the numerical scheme to capture elastodynamic wave propagation. To validate the numerical scheme, we simulate dynamic fracture experiments performed on model FGM compact tension specimens made of a polyester resin with varying amounts of plasticizer. The cohesive finite element scheme is then used in a parametric study of mode I dynamic failure of a Ti/TiB FGM, with special emphasis on the effect of the material gradient on the initiation, propagation and arrest of the crack.  相似文献   

5.
根据功能梯度材料II型裂纹在定常扩展速度情况下裂纹尖端离面位移场的平面应力级数解,对材料性能沿裂纹扩展方向的两种不同变化规律进行了分析,分别假设:(1)剪切模量线性变化,密度保持常数;(2)剪切模量和密度指数规律变化。在分析中泊松比保持不变。推导两种变化规律材料II型动态裂纹尖端的焦散线方程,对两种材料的焦散线进行数值模拟,并求解应力强度因子与焦散线特征尺寸之间的函数关系,以此为基础分析不同梯度变化规律对材料断裂性能的影响  相似文献   

6.
This study is concerned with the inverse problem of calculating material distributions intending to realize prescribed apparent fracture toughness in functionally graded material (FGM) coatings around a circular hole in infinite elastic media. The incompatible eigenstrain induced in the FGM coatings after cooling from the sintering temperature, due to mismatch in the coefficients of thermal expansion, is taken into consideration. An approximation method of determining stress intensity factors is introduced for a crack in the FGM coatings in which the FGM coatings are homogenized simulating the nonhomogeneous material properties by a distribution of equivalent eigenstrain. A radial edge crack emanating from the circular hole in the homogenized coatings is considered for the case of a uniform pressure applied to the surfaces of the hole and the crack. The stress intensity factors determined for the crack in the homogenized coatings represent the approximate values of the stress intensity factors for the same crack in the FGM coatings, and are used in the inverse problem of calculating material distributions in the FGM coatings intending to realize prescribed apparent fracture toughness in the coatings. Numerical results are obtained for a TiC/Al2O3 FGM coating, which reveal that the apparent fracture toughness in FGM coatings around a circular hole in infinite elastic media can be controlled within possible limits by choosing an appropriate material distribution profile in the coatings.  相似文献   

7.
梅比 《振动与冲击》2020,39(5):74-80
采用动态焦散线实验系统,对含圆孔缺陷的PMMA材料进行冲击断裂力学实验,研究三点弯曲梁中不同直径和位置的圆孔缺陷对扩展裂纹的影响。实验结果表明:扩展裂纹与圆孔缺陷相互作用前,呈现Ⅰ型拉伸断裂,扩展路径平直;与圆孔缺陷相互作用后,贯通萌生的次裂纹沿直线继续扩展,未贯通的裂纹偏移扩展。扩展裂纹与路径上圆孔缺陷贯通过程中,裂纹扩展速度和动态应力强度因子快速降为零,裂纹的扩展受到抑制,且圆孔直径越大、距离越近,抑制作用越显著;贯通萌生次生裂纹的起裂速度和起裂韧度,随着圆孔缺陷直径的增大而变大。扩展裂纹与偏置圆孔缺陷相互作用过程中,当圆孔缺陷直径越大、偏置距离越小,裂纹起偏距离越短,最大偏移量越大,并且扩展裂纹动态应力强度因子和扩展速度局部小幅增大。研究结果为分析动态裂纹扩展特征和材料破坏模式提供借鉴。  相似文献   

8.
对不同初始缝高比的自密实混凝土(Self-compacting concrete,SCC)非标准三点弯曲梁开展不同加载速率下的断裂试验,获得其断裂的荷载-裂缝嘴张开口位移曲线及峰值荷载、断裂韧度、临界缝高比增量、弹性模量和柔度系数等断裂参数,结合Pearson相关性检验公式及加载速率效应模型,定量分析初始缝高比、加载速率与断裂参数间的相关性强弱及SCC断裂参数的加载速率效应。结果表明峰值荷载、断裂韧度及弹性模量均存在一定的加载速率效应,柔度系数仅与初始缝高比强相关,弹性模量和断裂韧度是材料的固有属性,不受初始缝高比影响。同时,基于声发射(Acoustic emission,AE)技术对SCC的损伤断裂过程、断裂边界效应及裂缝扩展模式进行分析,结果表明,AE参量能较好地反映混凝土断裂的三阶段特性及边界效应。裂缝的扩展首先以拉伸裂缝为主,剪切裂缝占比随着裂缝扩展过程逐渐增大。   相似文献   

9.
In this paper, the arbitrary Lagrangian Eulerian formulation is employed for finite element modelling of dynamic crack propagation problem. The application phase simulation of computational dynamic fracture is applied to model by which the crack propagation history and variation of crack velocity are predicted using the material dynamic fracture toughness. The dynamic solution of problem is accomplished using the implicit time integration method. The convective terms due to mesh‐material motion are taken into account via the convection equation. A robust and efficient mesh motion technique, that its equations need not to be solved at every time step, is employed in Eulerian phase. The mesh connectivity is preserved during the analysis. So, the successive remeshing of model is eliminated. When the dynamic fracture criterion is satisfied for crack growth, the presented algorithm allows the crack to advance by splitting the material particle at the crack tip. The dynamic energy release rate is calculated at each time step to determine dynamic stress intensity factor. The predicted results are compared with those obtained through the experimental study and remeshing technique cited in the literature. The proposed computational algorithm leads to an accurate and efficient simulation of dynamic crack propagation process.  相似文献   

10.
Impact tests and fracture toughness tests using compact tension specimens were carried out on a number of slightly plasticized PVC compositions. These measurements, together with calculations from the craze thickness profile were used to determine the fracture mechanisms operating in the various tests. The marked decrease in the impact strength of PVC on addition of small amounts of a conventional plasticizer was found to be due to the plasticizer decreasing the stress intensity necessary to nucleate a craze at the notch tip of the impact specimen. The fracture toughness of the compact tension specimens which failed by a crazing mechanism increased with increasing plasticizer content. It is thought that the fracture of these specimens is controlled by the stress intensity necessary to propagate the pre-existing crack/craze system through the material.  相似文献   

11.
12.
It is crucial to obtain better fracture property of particle-reinforced metal matrix composites (PRMMCs) for application in structural parts. In this study, three-point bending tests are conducted on a TiB2-reinforced steel matrix composites (SMCs) with 9% and 13% TiB2 volume fractions to understand the effect of hot rolling and particle content on fracture toughness. Results show that increasing particle content has a negative effect on the fracture toughness of SCMs as a whole. Many microcracks induced by large-size particle fracture initiate in the front of crack tip and coalesce with one another are observed, thus accelerating the main crack propagation. However, hot rolling can effectively improve the fracture toughness and hardness of SMCs with two particle contents. Particle characteristics and matrix plasticity of the SMCs are optimized by hot rolling, which finally enhances the crack propagation resistance. The present work provides guiding suggestions for effectively improving fracture properties of PRMMCs.  相似文献   

13.
裂纹的起始扩展总是沿着裂纹的半径方向,在塑性区内半径方向的应变能能反映出材料的抵抗断裂的能力。对同一材料,不管它处于哪一种裂纹形式,它的断裂韧性参数是一个常量。本文引入了裂纹顶端临界扩展本征区。认为裂纹顶端存在一个决定裂纹扩展本征区,裂纹扩展是因为本征区的应力应变状态或损伤状态达到材料的断裂韧性才发生的。依此针对Ⅰ-Ⅱ...  相似文献   

14.
H. Yuan 《Acta Mechanica》1997,121(1-4):51-77
Summary The near-tip stress and deformation rate fields of a crack dynamically propagating along an interface between dissimilar elastic-plastic bimaterials are presented in this paper. The elastic-plastic materials are characterised by theJ 2-flow theory with linear plastic hardening. The solutions are assumed to be of variable-separable form with a power-law singularity in the radial direction. Two distinct solutions corresponding to the tensile and shear solutions exist with slightly different singularity strengths and very different mixities at the crack tip. The phenomenon of discrete and determinate mixities at the interfacial crack tip is confirmed in dynamic crack growth. This is not an artifact of the variable-separable solution assumption, arising from the linear-hardening material model. The dynamic crack analysis shows that the mixity of the near-tip field is mainly determined by the given material parameters and affected slightly by the crack propagation velocity. A significant variation of the mixity is observed near to the coalescing point of the tensile and shear solutions. The strength of the singularity is almost determined by the smaller strain-hardening alone, and dynamic inertia decreases the stress intensity. The asymptotic solutions reveal that the crack propagation velocity changes only the stress field of the tensile mode significantly. With increasing the crack propagation velocity, the stress singularity of the tensile solutions decreases obviously and the stress triaxiality at the tip (=0) falls considerably at the unity effective stress. These observations imply that the fracture toughness of the interface crack under tensile mode may be significantly higher than that under quasi-static conditions.  相似文献   

15.
In this paper, deformation and fracture behavior of glass sphere filled epoxy functionally graded materials (FGM) are numerically evaluated and experimentally studied. The fabrication of the FGM is described in detail, and the spatial gradation of elastic modulus and the microscopic structure in FGM are measured and analyzed. The deformation and fracture characterization of the FGM specimen with a crack oriented along the direction of the elastic gradient under three point bend are studied by the experimental and the finite element method. The influences of crack location at both the stiff and the compliant sides of the FGM specimen on crack initiation, deformation field and stress intensity factor are analyzed. The results are: (a) The neutral-axis in the FGM specimen under three-point-bending will shift toward the stiffer side; (b) The initial fracture load increases with the increase of elastic modulus at the crack tip; (c) The elastic gradients shield a crack on the compliant side and lower the stress intensity factor when compared to the one with crack on the stiff side. These results will be useful for better design and reliable evaluation of FGM.  相似文献   

16.
The nature of the crack and the structure behaviour can range from ductile to brittle, depending on material properties, structure geometry, loading condition and external constraints. The influence of variation in fracture toughness, tensile strength and geometrical size scale is investigated on the basis of the π-theorem of dimensional analysis. Strength and toughness present in fact different physical dimensions and any consistent fracture criterion must describe energy dissipation per unit of volume and per unit of crack area respectively. A cohesive crack model is proposed aiming at describing the size effects of fracture mechanics, i.e. the transition from ductile to brittle structure behaviour by increasing the size scale and keeping the geometrical shape unchanged. For extremely brittle cases (e.g. initially uncracked specimens, large and/or slender structures, low fracture toughness, high tensile strength, etc.) a snap-back instability in the equilibrium path occurs and the load–deflection softening branch assumes a positive slope. Both load and deflection must decrease to obtain a slow and controlled crack propagation (whereas in normal softening only the load must decrease). If the loading process is deflection-controlled, the loading capacity presents a discontinuity with a negative jump. It is proved that such a catastrophic event tends to reproduce the classical LEFM-instability (KI = KIC) for small fracture toughnesses and/or for large structure sizes. In these cases, neither the plastic zone develops nor slow crack growth occurs before unstable crack propagation.  相似文献   

17.
Rock dynamic fractures are common in many geophysical processes and engineering applications. Characterization of rock dynamic fracture properties such as the initiation fracture toughness, the fracture energy, and the fracture velocity, is thus of great importance in rock mechanics. A novel method is proposed in this work to measure dynamic Mode-I rock fracture parameters using a cracked chevron notched semi-circular bend (CCNSCB) specimen loaded by a split Hopkinson pressure bar (SHPB) apparatus. A strain gauge is mounted on the sample surface near the chevron notch to detect the fracture onset, and a laser gap gauge (LGG) is used to monitor the crack surface opening distance (CSOD) during the dynamic test. With dynamic force balance achieved in the tests, the stable–unstable transition of the crack propagation crack is observed and the initiation fracture toughness is calculated from the dynamic peak load. The average dynamic fracture energy as well as the fracture propagation toughness are calculated based on the first law of thermodynamics. The measured dynamic fracture properties of Laurentian granite using CCNSCB method are consistent with those reported in the literature using other methods.  相似文献   

18.
The problem of brittle crack propagation and fatigue crack growth in functionally graded materials (FGMs) is addressed. The proposed analytical approach can be used to estimate the variation of the stress-intensity factor as a function of the crack length in FGMs. Furthermore, according to the Paris’ law, the fatigue life and the crack-tip velocity of crack propagation can be predicted in the case of fatigue crack growth. A comparison with numerical results obtained according to the Finite Element method will show the effectiveness of the proposed approach. Detailed examples are provided in the case of three-point bending beam problems with either a FGM interlayer, or a FGM external coating. A comparison is presented between two types of grading in the elastic modulus: a continuous linear variation in the FGM layer and a discrete approximation with a multi-layered beam and a constant Young’s modulus in each layer.  相似文献   

19.
The concept of configurational forces is applied to demonstrate the application of the concept of configurational forces in the numerical simulation of crack growth and fracture processes. It is shown, how material property variations at an interface affect the crack driving force and how the criterion of maximum dissipation is used to evaluate the direction of crack propagation. Fatigue crack growth experiments were conducted on diffusion welded bimaterial specimens consisting of a high-strength steel and soft ARMCO iron. Two cases are considered: (1) specimens with an interface perpendicular to the initial crack orientation, and (2) specimens with an inclined interface. The numerical simulation with the concept of configurational forces show that not only variations of the elastic modulus and/or the yield stress have a tremendous influence on the crack driving force, the crack growth rate, and the curvature of the crack path, but also the thermal residual stresses that resulted from a rather small difference of the coefficient of thermal expansion.  相似文献   

20.
The concept of configurational forces is applied to demonstrate the application of the concept of configurational forces in the numerical simulation of crack growth and fracture processes. It is shown, how material property variations at an interface affect the crack driving force and how the criterion of maximum dissipation is used to evaluate the direction of crack propagation. Fatigue crack growth experiments were conducted on diffusion welded bimaterial specimens consisting of a high-strength steel and soft ARMCO iron. Two cases are considered: (1) specimens with an interface perpendicular to the initial crack orientation, and (2) specimens with an inclined interface. The numerical simulation with the concept of configurational forces show that not only variations of the elastic modulus and/or the yield stress have a tremendous influence on the crack driving force, the crack growth rate, and the curvature of the crack path, but also the thermal residual stresses that resulted from a rather small difference of the coefficient of thermal expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号