首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical properties, corrosion behavior and microstructures of the Al–Zn–Mg–Cu alloy under various ageing treatments were investigated comparatively. The results show that the tensile strength and corrosion resistance are strongly affected by the precipitate state. Massive fine intragranular precipitates contribute to high strength. Discontinuous coarse grain boundary precipitates containing high Cu content, as well as the narrow precipitate free zone, result in low corrosion susceptibility. After the non-isothermal ageing (NIA) treatment, the tensile strength of 577 MPa is equivalent to that of 579 MPa for the T6 temper. Meanwhile, the stress corrosion susceptibility rtf and the maximum corrosion depth are 97.8% and 23.5 μm, which are comparable to those of 92.8% and 26.7 μm for the T73 temper. Moreover, the total ageing time of the NIA treatment is only 7.25 h, which is much less than that of 48.67 h for the retrogression and re-ageing condition.  相似文献   

2.
Controlling the precipitation through thermomechanical treatment is an important method to improve the corrosion resistance of Al–Cu–Mg alloys. In this study, the corrosion behaviors of Al–Cu–Mg alloys in the solution-treated state and retrogressiontreated state under cold rolling deformation and then natural aging were investigated. In the solution-treated series alloys, the cold-rolled deformation improved the resistance to intergranular corrosion by suppressing the precipitation of the S-phas...  相似文献   

3.
The effect of homogenization on the corrosion behavior of 5083-O aluminum alloy is presented in this paper. The intergranular corrosion and exfoliation corrosion were used to characterize the discussed corrosion behavior of 5083-O aluminum alloy. The variations in the morphology, the kind and distribution of the precipitates, and the dislocation configurations in the samples after the homogenization were evaluated using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The effects of the highly active grain boundary character distribution and the types of constituent particles on the corrosion are discussed on the basis of experimental observations. The results indicated that the corrosion behavior of 5083-O alloy was closely related to the microstructure obtained by the heat treatment. Homogenization carried out after casting had the optimal effect on the overall corrosion resistance of the material. Nevertheless, all samples could satisfy the requirements of corrosion resistance in marine applications.  相似文献   

4.
In this study,the two kinds of Fe–Al coatings were fabricated by pack aluminizing on low-carbon steel at different temperatures.The corrosion behavior of the Fe–Al coatings in artificial seawater was investigated by the electrochemical and weight loss techniques.Results show that the thickness of coating layer increases with increasing aluminizing temperature.The coatings exhibit high micro-hardness and good metallurgical bonding with the substrate.In comparison with the steel substrate,the corrosion current density Icorrof the Fe–Al coatings is always lower than that of substrate,about 1/38 or 1/33 after 2 h immersion,and 1/3 or 1/6 for 720 h immersion.As can be seen from the weight loss curve,the Fe–Al coatings show less loss than that of the substrate within 30-day immersion.The corrosion products formed on the surface of the coatings include oxides of Al,Mg,Fe and Ca,and pitting defect has also been found.The Fe–Al coating with higher content of Fe_2Al_5 has better corrosion resistance.  相似文献   

5.
Physical vapor deposition method was utilized to apply Al coating onto Cu–10Al–13Mn alloy, then coated layer was anodized in different temperatures: 5 and 10°C as well as several potentials: 20, 30, 40, 50 V in order to achieve best anodizing parameters. The effects of anodizing parameters on alumina nanotube formation and corrosion resistance were investigated. Phase analysis on surface was conducted by X-ray diffraction method and nanotube characteristics was studied by scanning electron microscopy (SEM) and surface topology was investigated by atomic force microscopy (AFM). Additionally, the corrosion resistance of coatings was studied by potentiodynamic test in 1M NaCl solution. The results depicted that whole deposited Al layer was anodized and FCC alumina was formed merely. Polarization test results was illustrated that Al anodized layer significantly improved Cu–10Al–13Mn corrosion resistance. Uncoated specimen had highest corrosion rate and anodized layer in lower temperature and voltage had minimum alumina nanotube dimension; as a result, it had best corrosion behavior in NaCl corrosive solution.  相似文献   

6.
The electrochemical behavior of five alloys of variable compositions in the Al65Cu25Fe10–хCr х system in dependence on the number of QC phases in acidic and alkaline media has been investigated by the potentiodynamic method. It has been established that the samples’ corrosion stabilities increase along with the increase of the solution pH. Higher stability was manifested by alloys with a predominant quasi-crystalline (dexagonal and icosahedral) structural component.  相似文献   

7.
《Intermetallics》2005,13(8):841-847
Al–Cu–Fe samples were prepared by ball milling powders of elemental Al, Cu, Fe (first route) and of elemental Al mixed with previously mechanically alloyed Cu–Fe solid solution (second route). Phase and structure transformations by annealing the as-milled powders were investigated by differential scanning calorimetry, X-ray diffraction and Mössbauer spectroscopy. The influence of the thermodynamic driving forces, namely the heat of mixing, positive for the Cu–Fe system and negative for the Al–Fe and Al–Cu systems, was discussed and correlated to the sequence of phase transformations during heating.  相似文献   

8.
The isothermally compression deformation behavior of an elevated Cu/Li weight ratio Al–Cu–Li alloy was investigated under various deformation conditions.The isothermal compression tests were carried out in a temperature range from 300 to 500 °C and at a strain rate range from 0.001 to 10 s-1.The results show that the peak stress level decreases with temperature increasing and strain rate decreasing,which is represented by the Zener–Hollomon parameter Z in the hyperbolic sine equation with the hot deformation activation energy of 218.5 k J/mol.At low Z value,the dynamic recrystallized grain is well formed with clean high-angle boundaries.At high Z value,a high dislocation density with poorly developed cellularity and considerable fine dynamic precipitates are observed.Based on the experimental data and dynamic material model,the processing maps at strain of 0.3,0.5 and 0.7 were developed to demonstrate the hot workability of the alloy.The results show that the main softening mechanism at high Z value is precipitate coarsening and dynamic recovery;the dynamic recrystallization of the alloy can be easily observed as ln Z B 29.44,with peak efficiency of power dissipation of around 70%.At strains of 0.3,0.5 and 0.7,the flow instability domains are found at higher strain rates,which mainly locate at the upper part of processing maps.In addition,when the strain rate is 0.001 or 0.02 s-1,there is a particular instability domain at 300–350 °C.  相似文献   

9.
《Intermetallics》2005,13(8):885-895
Three Al–Cu–Fe alloys with compositions of Al60–65Cu20–27.5Fe12.5–15 were prepared by conventional casting and further processed by melt-spinning. The structures formed were examined to get an insight into the interrelated effects of synthesis, processing and microstructure of Al–Cu–Fe alloys. The study aimed at answering the questions such as whether the production of single-phase quasicrystalline ribbons is possible by the melt-spinning process and what is the role of the degree of undercooling in the development of microstructure in melt-spun ribbons.The icosahedral ψ-Al65Cu20Fe15 phase forms by a peritectic reaction between the primary β-AlFe phase and the liquid, as the temperature decreases. At the later stages of cooling, the monoclinic λ-Al13Fe4 phase and the tetragonal θ-Al2Cu phase are formed in the cast alloys, as a result of peritectic reactions. In the rapidly solidified alloys, the formation of the tetragonal θ-Al2Cu phase and, in the case of alloy Al60Cu25Fe15, the monoclinic λ-Al13Fe4 phase is avoided, apparently due to high degree of undercooling. Thus, the production of single-phase quasicrystalline ribbons is not possible by the melt-spinning process, at least by using the cooling rate of 5–7×104 °C/s. In addition to phase selection, the degree on undercooling influences, for example, the composition of the ψ-Al65Cu20Fe15 phase and the grain morphology in melt-spun ribbons.  相似文献   

10.
Owing to the high-temperature reactivity of titanium, the oxidation and alloying of titanium during hot working processes is an important variable. The oxidation behavior of Ti–6Al–4V alloy in air was investigated at various temperatures between 850 and 1100 °C for different times. The oxidation kinetics were determined by isothermal oxidation weight gain experiments. The results showed that the oxidation kinetics approximately obeyed a parabolic law. The activation energy of oxidation was estimated to be 199 and 281 kJ mol?1 when temperature was above and below the beta transformation temperature (T β), respectively. A model to predict oxidation extent was established based on experimental observations. The oxide scales mainly consisted of TiO2 with a small amount of Al2O3 and TiVO4. The alpha case was defined as solid solution formed because of oxygen diffusion into the substrate. The difference in the morphology and the formation mechanism of the alpha case at different temperature ranges was mainly owing to the participation of the grain boundary and grain orientation of the nucleation site.  相似文献   

11.
Hot deformation behavior,microstructural evolution and flow softening mechanism were investigated in Ti–46Al–8Nb alloy via isothermal compression approach.The true stress–strain curves exhibited typical work hardening and flow softening,in which the dependence of the peak stress on temperature and strain rate was obtained by hyperbolic sine equation with Zener–Hollomon(Z)parameter,and the activation energy was calculated to be 446.9 k J/mol.The microstructural analysis shows that the alternate dark and light deformed ribbons of Al-rich and Nb-rich regions appeared and were associated with local flow involving solute segregation.The Al segregation promoted flow softening mainly arising from the recrystallization of γ phase with low stacking fault energy.The coarse recrystallized γ and several massive γ phase were observed at grain boundaries.While in the case of Nb segregation,β/B2 phase harmonized bending of lamellae,combined with the growth of recrystallized γ grains and α+β+γ→α+γ transition under conditions of temperature and stress,leading to the breakdown of α_2/γ lamellar colony.During the hot compression process,gliding and dissociation of dislocations occurred in γ phase that acted as the main softening mechanism,leading to extensive c twins and cross twins in α/γ lamellae and at grain boundaries.In general,homogeneous microstructure during the hot deformation process can be obtained in Ti Al alloy with high Nb addition and low Al segregation.The deformation substructures intrinsically promote the formability of Ti–46Al–8Nb alloy.  相似文献   

12.
In the present work, the influence of various retrogression treatments on hardness, electrical conductivity and mechanical properties of a high Zn-containing Al–Zn–Mg–Cu alloy is investigated and several retrogression regimes subjected to a same strength level are proposed. The precipitates are qualitatively investigated by means of transmission electron microscopy (TEM) and high-resolution transmission electron microscopy techniques. Based on the matrix precipitate observations, the distributions of precipitate size and nearest inter-precipitate distance are extracted from bright-field TEM images projected along 〈110〉Al orientation with the aid of an imaging analysis and an arithmetic method. The results show that GP zones and η′ precipitates are the major precipitates and the precipitate size and its distribution range continuously enlarge with the retrogression regime expands to an extent of high temperature. The nearest inter-precipitate distance ranges obtained are quite the same and the average distance of nearest inter-precipitates show a slight increase. The influence of precipitates on mechanical properties is discussed through the interaction relationship between precipitates and dislocations.  相似文献   

13.
Mg–Sr alloy has been studied as a potential biodegradable material with excellent bioactivity to promote the bone formation. However, its degradation behavior needs to be well controlled to avoid the negative effect, which is important for future application. Therefore in this study, the microstructure and its effect on corrosion behavior of an Mg–1.5 Sr alloy were investigated. The microstructures of the alloy under different processing procedures were characterized by both optical and scanning electron microscopes. The corrosion performance was studied in Hank's solution using immersion,potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) tests. The results showed that the grain size and the amount and distribution of b-Mg_(17)Sr_2 had obvious effects on the corrosion behavior of Mg–Sr alloy. The smaller the grain size was, the more the protective surface layer formed on Mg–Sr alloy, and the higher the corrosion resistance was. For the as-cast Mg–Sr alloy, the network-like second phases precipitated along the grain boundaries could not hinder the corrosion due to their own corrosion cracking accelerating the intergranular corrosion. However, the refinement of second phases increased the corrosion resistance of the as-extruded alloy. After solution treatment at 450 °C for 5 h, the grains in the alloy did not grow much and b-Mg_(17)Sr_2 phases homogenously distributed in the alloy, resulting in the increase in corrosion resistance. However, after aging treatment, large amount of precipitated second phases increased the galvanic corrosion of the alloy, accelerating the development of corrosion.  相似文献   

14.
The high-temperature oxidation behavior of an oxide dispersion-strengthened (ODS) Fe3Al alloy has been studied during isothermal and cyclic exposures in oxygen and air over the temperature range 1000 to 1300°C. Compared to commercially available ODS–FeCrAl alloys, it exhibited very similar short-term rates of oxidation at 1000 and 1100°C, but at higher temperatures the oxidation rate increased because of increased scale spallation. Over the entire temperature range, the oxide scale formed was -Al2O3, with the morphological features typical of reactive-element doping and was similar to those formed on the ODS–FeCrAl alloys. Although initially this scale appeared to be extremely adherent to the Fe3Al substrate, an undulating metal–oxide interface formed with increasing time and temperature, which led to cracking of the scale in the vicinity of surface undulations accompanied by a loss of small fragments of the full-scale thickness. In some instances, the surface undulations appeared to have resulted from gross outward local extrusion of the alloy substrate. Similar features developd on the FeCrAl alloys, but they were typically much smaller after a given oxidation exposure. The ODS–Fe3Al alloy has a significantly larger coefficient of thermal expansion (CTE) than typical FeCrAl alloys (approximately 1.5 times at 900°C) and this appears to be the major reason for the greater tendency for scale spallation. The stress generated by the CTE mismatch was apparently sufficient to lead to buckling and limited loss of scale at temperatures up to 1100°C, with an increasing amount of substrate deformation at 1200°C and above. This deformation led to increased scale spallation by producing an out-of-plane stress distribution, resulting in cracking or shearing of the oxide.  相似文献   

15.
Selective oxidation behavior of ferritic martensitic Fe–Cr base alloys, exposed in various atmospheres containing combinations of O2, CO2, and H2O, were studied at various temperatures relevant to oxy-fuel combustion. This paper begins with a discussion of the required Cr content to form a continuous external chromia scale on a simple binary Fe–Cr alloy exposed in oxygen or air based on experiments and calculations using the classic Wagner model. Then, the effects of the exposure environment and Cr content on the selective oxidation of Fe–Cr alloys are evaluated. Finally, the effects produced by alloying additions of Si, commonly present in various groups of commercially available ferritic steels, are described. The discussion compares the oxide scale formation on simple binary and ternary Fe–Cr base model alloys with that on several commercially available ferritic steels.  相似文献   

16.
The cyclic oxidation behavior of the Ti–6Al–4V alloy has been studied under heating and cooling conditions within a temperature range from 550 to 850 °C in air for up to 12 cycles. The mass changes, phase, surface morphologies, cross-sectional morphologies and element distribution of the oxide scales after cyclic oxidation were investigated using electronic microbalance, X-ray diffractometry, scanning electron microscopy and energy dispersive spectroscopy. The results show that the rate of oxidation was close to zero at 550 °C, obeyed parabolic and linear law at 650 and 850 °C, respectively, while at 750 °C, parabolic—linear law dominated. The double oxide scales formed on surface of the Ti–6Al–4V alloy consisted of an inner layer of TiO2 and an outer layer of Al2O3, and the thickness of oxide scales increased with an increasing oxidation temperature. At 750 and 850 °C, the cyclic oxidation resistance deteriorated owing to the formation of voids, cracks and the spallation of the oxide scales.  相似文献   

17.
Maréchal  L.  Lesage  B.  Huntz  A. M.  Molins  R. 《Oxidation of Metals》2003,60(1-2):1-28
The oxidation kinetics of two ODS Fe–Cr–Al alloys, PM 2000 and MA 956, were studied in oxygen and in air under isothermal conditions from 1000 to 1300°C. They both form an -alumina scale and have good oxidation resistance, without any mass loss. Although the aluminum content in these alloys is higher than the minimum Al content necessary to ensure the growth of a continuous alumina scale, an aluminum depletion occurred in the substrate. This depletion allows the determination of aluminum diffusion coefficients in the ODS alloy. This method is very original and interesting as no Al-stable isotope is available. Moreover, the evolution of the aluminum concentration in the substrate allows one to determine the lifetime of these alloys: indeed, when the aluminum content decreases and becomes lower than a critical value, alumina can no longer form, and less-stable oxides grow very rapidly compared to alumina.  相似文献   

18.
Al–Cu–Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al–5wt%Cu and Al–15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall–Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.  相似文献   

19.
The corrosion behavior of Cu–Al–Be shape memory alloys with different microstructures and Be content in a 3.5% NaCl solution was studied by weight loss, cyclic anodic polarization and chronoamperometric measurements. The beryllium has a beneficial effect in β alloys. A pitting potential of −100 mV/SCE was found by anodic polarization tests for all the studied alloys, corresponding to the formation of pits produced by severe dealuminization. Samples with precipitates were more susceptible to pit formation. The corrosion behavior is strongly affected by the alloy microstructural conditions, and the β samples present higher pitting resistance and repassivation ability.  相似文献   

20.
Effect of small content of chromium(Cr) on wet–dry acid corrosion behavior of low alloy steels has been investigated.The results show that the corrosion resistance of the steels increased with increasing Cr content from 0.10 to0.50 wt%.Higher content of Cr promotes initial corrosion and accelerates the formation of dense and protective rust in long-term corrosion.The enhanced protectiveness of the rust is closely related to its composition.High content of Cr increases the content of amorphous phases and decreases the content of c-Fe OOH in the rust,resulting in the high compactness of the rust and low electrochemical activity in acid condition.Cr dopes in rust and depresses the transformation from amorphous phases to a-Fe OOH,as well as the growth process of Fe OOH particles,which is responsible for the enhanced compactness of rust in long-term corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号