首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
轴向磁场对电弧离子镀TiN薄膜组织结构及力学性能的影响   总被引:1,自引:1,他引:0  
为了研究轴向磁场对薄膜结构及力学性能的影响规律,采用电弧离子镀方法在高速钢基体上沉积了TiN薄膜,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、轮廓仪和纳米压痕仪考察了外加轴向磁场对薄膜化学成分、组织结构、硬度及弹性模量的影响。结果表明:外加轴向磁场对TiN薄膜的组织结构及力学性能有明显影响。磁场强度越高,薄膜表面颗粒及溅射坑越大,薄膜表面粗糙度增大;薄膜中N含量随着磁场强度增加而增大,而Ti含量则显示出相反的趋势;磁场对薄膜择优取向有明显影响,随着磁场强度增加,薄膜(111)取向增强,而后逐渐转变为(220)择优;薄膜硬度和弹性模量随着磁场强度增加先增加而后降低,在磁场强度为50Gs时分别达到最大值28.4GPa与415.4GPa。  相似文献   

2.
为解决硬质薄膜因与软基体硬度和模量差较大导致的薄膜失效问题,提高硬质薄膜在Ti6Al4V(TC4)钛合金基体上的适应性,使用掺杂氮化钛(TiN)陶瓷薄膜对低模量Ti6Al4V合金表面强化。采用热丝增强等离子体磁控溅射技术在Ti6Al4V合金表面制备Ti(Al/Pt)N薄膜:包括本征TiN、Al&Pt掺杂TiAlN和TiAl(Pt)N薄膜。采用扫描电子显微镜、X-射线衍射仪、纳米压痕仪、洛氏硬度计和摩擦磨损测试仪分别表征三种薄膜组织形貌、能谱分析、相结构和内应力、纳米硬度和模量及耐磨性。结果表明:Al元素掺杂使TiN薄膜柱状晶细化,截面形貌柱状晶更致密;同时微量Pt掺杂后,截面断口呈韧性撕裂。本征TiN和TiAlN薄膜衍射峰图谱呈现TiN(111)取向,TiAl(Pt)N薄膜的衍射峰呈TiN(200)主峰位。Al元素掺杂使TiN薄膜晶格畸变增多,内应力从-13 MPa增大到-115 MPa,导致膜-基结合力恶化,洛氏压痕和摩擦磨损实验中均出现薄膜剥落。Pt掺杂后薄膜内应力降低到-66 MPa,在洛氏压痕试验中TiAl(Pt)N薄膜与基体结合良好,仅有少许环形裂纹。摩擦磨损试验中本...  相似文献   

3.
TiAlMoN films with different Mo contents were deposited by magnetron sputtering at various duty ratios of sputtering Mo target power source, after depositing a Ti interlayer. The concentrations and structure of the films were determined by energy dispersive X-ray spectroscopy, scanning electron microscopy and X-ray diffraction. The Mo content of TiAlMoN films gradually increased with increasing the duty ratio. The structure of TiAlMoN films changed from blocky to featurelessness, and ultimately changed to columnar at 12.1 at.% Mo. The TiAlMoN films exhibited the single TiN-based phase with a TiN(111) preferred orientation, and the intensity of this diffraction peak gradually increased with increasing Mo content. Nanoindentation tests indicated that the hardness of TiAlMoN films continuously increased with Mo content, while the H/E ratio reached a peak at 8.3 at.% Mo. All the films exhibited a good adhesion to WC–Co substrates because of the internal Ti interlayer. The ball-on-disk wear properties of TiAlMoN films showed that the lowest wear rate and best wear resistance were for 8.3 at.% Mo, resulting from the formation of molybdenum trioxide on the surface of wear track.  相似文献   

4.
This investigation examined how titanium ion implantation pre-treatment affects the residual stress of TiN coatings on M2 high-speed steel. Ions were implanted by metal plasma ion implantation. The adhesion strength of the TiN coatings was enhanced by pre-treatment that implanted Ti into the M2 tool steel substrate. The implanted substrate functioned as a buffer layer between the deposited TiN and the tool steel substrate, resulting in variations of the residual stress. The residual stress determined by glancing-angle XRD demonstrates that the deposited TiN films on ion-implanted substrates exhibited reduced compressive stress, from − 3.95 to − 2.41 GPa, which corresponded to a decrease in the grain size of the TiN films. The texture of the TiN film was clearly transformed from the preferred orientation of (220) to (111), subsequently enhancing wear resistance against a tungsten ball.  相似文献   

5.
软硬交替多层结构的薄膜因其优异的抗摩擦磨损性能和耐腐蚀特性使其在工程领域具有重要的应用价值。利用多弧离子镀在不锈钢和Si(100)表面沉积了Ti N单层薄膜和3种不同Ti/Ti N调制比的多层膜,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、CSM摩擦磨损试验机和电化学工作站分别分析了薄膜的结构特征、耐磨损性能和电化学性能。结果表明:多层膜层状结构明显,Ti N相出现(111)面择优取向;Ti与Ti N沉积时间比为1∶5的样品具有较低的摩擦因数(0.26)和磨损率(6.6×10–7 mm3·N–1·m–1);在3.5%Na Cl溶液中,多层膜样品的腐蚀电流密度较不锈钢基体降低了两个数量级,腐蚀电位较不锈钢基体明显提高,表明多层膜可以提高不锈钢基体的耐腐蚀性。  相似文献   

6.
谢启  付志强  岳文  王成彪 《表面技术》2017,46(6):161-167
目的研究N_2流量对等离子体增强磁控溅射TiN涂层组织结构和性能的影响,优化TiN涂层的制备工艺。方法在不同N_2流量的条件下,采用等离子体增强磁控溅射法制备TiN涂层。采用3D形貌仪和扫描电子显微镜观察涂层的表面形貌,利用X射线衍射仪测定涂层的相结构,利用显微硬度计测试涂层试样的硬度,利用球-盘摩擦磨损试验机考察涂层试样的摩擦磨损性能,利用能谱仪分析磨痕表面的化学组成。结果 N_2流量小于61.5 mL/min时,增加N_2流量对总气压和靶电压的影响很小;N_2流量超过61.5 mL/min后,总气压和靶电压均随着N_2流量的增加而显著增大。随着N_2流量的增大,制备的TiN涂层X射线衍射谱中的TiN(111)、TiN(220)衍射峰强度不断增大,TiN(200)衍射峰强度先不变后突然减小。N_2流量约为61.5 mL/min时,制备的TiN涂层试样的致密性最好,硬度最高。N_2流量在50~61.5 mL/min范围内,制备的TiN涂层试样的磨损率较低,最低可达7.4×10~(-16) m~3/(N·m)。当N_2流量超过63 mL/min后,TiN涂层试样的磨损率显著增大。结论 N_2流量对等离子体增强磁控溅射TiN涂层择优取向、硬度及摩擦磨损性能的影响较显著,N_2流量约为61.5 mL/min时,制备的TiN涂层试样的硬度和耐磨性最好。  相似文献   

7.
电弧离子镀(Ti,Al)N复合薄膜的结构和性能研究   总被引:18,自引:0,他引:18  
利用电弧离子镀设备在1Cr11Ni2W2MoV不锈钢基体表面沉积了不同成分的(Ti1-xAlx)N薄膜;X射线衍射分析表明,x在0-0.5之间时,薄膜是Bl型(NaCl)单相结构;x=0.64时,同时出现B1和B4型(ZnS)两种相结构,x≥0.79时,只出现B4型结构;随着Al含量的增加,晶格常数减小,B1结构的薄膜择优取向由(111)向(220)转变。力学性能测试表明,适当Al含量可以提高薄膜的硬度、膜基结合强度及抗磨损性能;B1结构(Ti,Al)N薄膜的氧化实验表明,随着Al含量的增加,薄膜抗氧化性能显著提高。  相似文献   

8.
TiN涂层的正交设计工艺分析   总被引:3,自引:0,他引:3  
对多弧离子镀TiN涂层的工艺(包括氮分区、弧靶啼场、弧源电流)进行了正交设计分析.表明,影响TiN涂层表面硬度的主要因素为氮分压和弧靶磁场大小,弧流大小为次要因素.氮分压对TiN涂层的相结构影响较大,而弧靶磁场影响电弧运动的稳定性以及涂展表面粗大颗粒的大小.另外,在其它工艺条件相同的情况下,随着氮分区、弧靶磁场的增大,TiN涂层的耐磨性均有提高.  相似文献   

9.
利用对向靶溅射(FTS)沉积出(111)择优取向的单相TiN膜,膜硬度(HV)最高可达3800,择优取向随基板偏压增高,可由(111)转向(200),晶格常数随氮气分压增高而增大,这是氮原子进入四面体间隙引起的。  相似文献   

10.
Titanium nitride (TiN) films were deposited on Si(100) substrates using a hollow cathode discharge ion plating (HCD-IP) technique. Based on previous experimental results, the optimum deposition conditions were chosen. The thickness of the TiN film and the angle between the specimen surface and the evaporating source (coating angle) were selected as the variable parameters. The purpose of this study is to investigate the effect of these two processing parameters on the properties of TiN films. After deposition, the thin film structure was characterized by X-ray diffraction (XRD), cross-sectional transmission electron microscopy (XTEM), and field-emission-gun scanning electron microscopy (FEG-SEM). N/Ti ratios of the thin films were determined using both X-ray photoelectron spectrometer (XPS) and Rutherford backscattering spectrometer (RBS). The resistivity of the TiN films was measured by a four-point probe. The hardness of the thin films was obtained from nanoindentation tests. An atomic force microscope (AFM) was used to measure the roughness of the thin films. The results showed that (111) was the dominant preferred orientation in the TiN films for most of the deposition conditions and for all coating angles, especially for film thicknesses greater than 1 μm. Hardness values of TiN films were approximately 28 GPa for film thicknesses close to 0.5 μm and above, and did not vary with the coating angle. The hardness can be correlated to the (111) preferred orientation of the TiN film. The hardness increased with the (111) texture coefficient and leveled off as the texture coefficient approached 1. The packing factor had a linear relationship with the film thickness. Resistivity decreased with increasing thickness and increasing packing factor for all coating angles. At a similar thickness or packing factor, specimens coated at angles different from 0° had a much higher resistivity than those coated at 0°.  相似文献   

11.
目的确定适当的负偏压,提高多弧离子镀氮化钛薄膜的综合性能。方法采用不同的负偏压,在4Cr13不锈钢表面制备Ti N薄膜,探讨偏压对薄膜表面质量、结构、硬度、结合力和摩擦系数的影响。结果负偏压对薄膜表面质量的影响较大:负偏压为0 V时,Ti N薄膜表面凹凸不平,液滴较多;随着负偏压升高,薄膜表面变得光滑,液滴减少并变小,薄膜致密性也得到提高。在不同负偏压下,Ti N薄膜均呈现出在(111)晶面的择优取向,但随着负偏压的增大,这种择优取向逐渐减弱,当负偏压达到400 V时,薄膜在(220)晶面的峰值逐渐增强。随着负偏压从0增至400 V,薄膜的硬度、结合力和耐磨性均先提高,后降低。当负偏压为300 V时,薄膜的硬度和结合力达到最大,分别为2650HV和58 N;摩擦系数和磨损量最小,分别为0.48和0.1065 mm3。结论施加适当的负偏压可以提高薄膜的硬度、结合力、耐磨性等性能,当负偏压为300 V时,薄膜的各项性能达到最佳。  相似文献   

12.
铝质基体上Ti(C,N)/TiN多元多层膜工艺参数研究   总被引:1,自引:0,他引:1  
首先在大范围内调节负偏压和基体温度两个参数,实现在铝质材料基体上沉积与基体结合良好的TiN膜,在此基础上通过调节N2、C2H2工作气氛流量比及Ti(C,N)、TiN膜层的层数,沉积了3类不同的膜,并对其力学与摩擦学性能进行了考察。结果表明:在(N2 C2H2)总流量一定的情况下,C2H2流量增大,则使Ti(C,N)膜层中含C量增多,膜层硬度提高,但韧性变差,表面变粗糙;在总厚基本不变的情况下,层数增多,单层变薄,使膜材晶粒细化,硬度提高,韧性变好。在3类膜中,1#膜C2H2流量适当且膜层数最多(6层),其摩擦学性能表现最好,临界荷载为76N,显徼硬度为1911HV0.1,与基体相比,耐磨性提高了10倍多。  相似文献   

13.
直流磁控溅射沉积(Ti,Al)N膜的研究   总被引:3,自引:0,他引:3  
蒋生蕊  彭栋梁  赵学应  谢亮  李强 《金属学报》1994,30(17):233-237
研究了用直流磁控反应性溅射法在Ar+N2气氛中沉积(Ti,Al)N膜的工艺。(Ti,Al)N膜具有比TiN膜高的耐磨性、硬度和高温抗氧化性。AES深度分析表明,由Al的选择性氧化形成的Al2O3保护层,是(Ti,Al)N膜具有优良高温抗氧化性能的原因.  相似文献   

14.
Monolayer and multilayer TiN films were synthesized on a SKD 11 steel sheet by an arc ion plating technique and the correlation between the microstructure and properties of the TiN films was comparatively investigated. The results indicated that the main phase was fcc-TiN, showing a (200) preferred orientation in the film under 2.0 × 10−1 torr N2 partial pressure, whereas a gradual transition to (111) preferred orientation was observed with decreasing N2 partial pressure to 1.4 × 10−1 torr. The (200) and (111) textures in the film under an arc current of 80 A were found to be competitive orientations, but the (200) texture became stronger as the arc current was increased. Compared to the optimal monolayer TiN films, the multilayer TiN film possessed high hardness of up to 20.3 ± 1.3 GPa and excellent wear resistance. These features are attributed to the presence of dense microstructures that are mainly composed of TiN phase and are around 1.7 μm to 1.8 μm in thickness.  相似文献   

15.
通过反应磁控溅射制备了一系列不同Si3N4层厚的TiN/Si3N4纳米多层膜,利用X射线衍射仪、高分辨透射电子显微镜、扫描电子显微镜和微力学探针表征了多层膜的微结构和硬度,研究了其硬度随Si3N4层厚微小改变而显著变化的原因.结果表明,在TiN调制层晶体结构的模板作用下,溅射态以非晶存在的Si3N4层在其厚度小于0.7 nm时被强制晶化为NaCl结构的赝晶体,多层膜形成共格外延生长的{111}择优取向超晶格柱状晶,并相应产生硬度显著升高的超硬效应,最高硬度达到38.5GPa.Si3N4随自身层厚进一步的微小增加便转变为非晶态,多层膜的共格生长结构因而受到破坏,其硬度也随之降低.  相似文献   

16.
Titanium nitride (TiN) films were deposited on 304 stainless steel substrate by hollow cathode discharge (HCD) ion-plating technique. The preferred orientation and microstructure were studied by x-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. Microhardness of the TiN film was measured and correlated to the microstructure and preferred orientation. The results of TEM study showed that the microstructure of TiN film contains grains with nanometer scale. As the film thickness increases, the grain size of TiN increases. The x-ray results show that TiN(111) is the major preferred orientation of the film. The hardness of TiN film is primarily contributed from TiN(111) preferred orientation.  相似文献   

17.
In this study two types of TiN films were prepared, one using the filtered cathodic arc plasma (FCAP) technique with an in-plane “S” filter, and the other using the multi-arc ion-plating (MAIP), and both deposited under the same parameters. Comparisons of the texture, hardness, roughness, tribological and electrochemical corrosion behaviors of the two types of TiN films were given. The TiN films obtained by the FCAP technology were found to be highly uniform, smooth and macroparticle-free. The TiN films deposited by FCAP had a (111) preferred orientation, while there was no texture in the films deposited by MAIP. Under low load the two kinds of TiN coatings had very different wear mechanisms; the films of FCAP had a lower wear rate and friction coefficient compared with the TiN films deposited by the MAIP technique. The dense and hole-free structure of TiN films of FCAP could effectively avoid the avalanche of TiN films from the substrate during corrosion tests.  相似文献   

18.
In order to investigate the microstructure of TiN and TiAlN coatings and their effect on the wear resistance of Mg alloy, TiN and TiAlN coatings were deposited on AZ91 magnesium alloy by multi-arc ion plating technology. TiN and Ti70Al30N coatings were prepared on the substrate, respectively, which exhibited dark golden color and compact microstructure. The microstructures of TiN and Ti70Al30N coatings were investigated by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The micro-hardness and wear resistance of TiN and Ti70Al30N coatings were investigated in comparison with the uncoated AZ91 alloy. The XRD peaks assigned to TiN and TiAlN phases are found. The hardness of TiN coatings is two times as high as that of AZ91 alloy, and Ti70Al30N coating exhibits the highest hardness. The wear resistance of the hard coatings increases obviously as result of their high hardness.  相似文献   

19.
本文采用轴向磁场增强电弧离子镀在高速钢基体上沉积了TiN/Cu纳米复合薄膜,研究了基体脉冲偏压幅值对薄膜成分、结构、力学性能及耐磨性能的影响。结果表明,薄膜中铜含量随着脉冲偏压幅值的增加先增加而后降低,在一个较低的范围内(1.3-2.1at.%)。X射线衍射结果表明所有的薄膜均出现TiN相,并未观察到Cu相。薄膜的择优取向随着脉冲偏压幅值的增加而改变。薄膜的最高硬度为36GPa,是在脉冲偏压幅值为-200V时得到的,对应了1.6at.%的Cu含量。与纯的TiN薄膜相比,Cu的添加明显增强了薄膜的耐磨性能。  相似文献   

20.
In this paper, multilayer coatings of TiN/TiCN/Al2O3/TiN are deposited on the Ti(C, N)-based cermets containing WC, and the effect of WC on the growth and adhesion strength as well as the mechanical properties of the coating are investigated. The multilayer coatings deposited by chemical vapor deposition (CVD) are uniform and dense. TiN coating exhibits a dense fine-grained structures and the Ti (C,N) on TiN coating shows dense columnar structure. The α-Al2O3 layer deposited on transition coating presents coarse grains with limited voids. The grain size of the columnar crystals deposited on the substrates gradually decreases with WC addition. The Al2O3 layer shows a preferred growth orientation of (104) plane. For TiN/TiCN phase, a change in orientation from (111) to (200) is observed. Generally, the (200) preferred orientation enhances and (111) preferred orientation diminishes with increasing WC addition. Strong adhesion of the CVD coating is obtained due to a sufficient amount of chemical elements, especially tungsten, diffusing from the substrate to the interfacial layer. Scratch tests show that the adhesion strength of TiN/TiCN/Al2O3/TiN films gradually increases firstly, and then decreases. With the addition of WC, the hardness, elastic modulus and plasticity index increase at the beginning, and then decrease. The change in nanohardness and elastic modulus is related to the grain size, elemental diffusion, and preferred orientation of the coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号