首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yellow upconversion (UC) luminescence is observed in Ho3+/Yb3+ co-doped CaMoO4 synthesized by complex citrate-gel method. Under 980 nm excitation, Ho3+/Yb3+ co-doped CaMoO4 exhibited yellow emission based on green emission near 543 nm generated by 4F4, 5S2  5I8 transition and strong red emission around 656 nm generated by 5F5  5I8 transition, which are assigned to the intra 4f transitions of Ho3+ ions. The optimum doping concentration of Ho3+ and Yb3+ was investigated for highest upconversion luminescence. Based on pump power dependence, upconversion mechanism of Ho3+/Yb3+ co-doped CaMoO4 was studied in detail.  相似文献   

2.
In the paper upconversion luminescence properties in Yb3+/Tm3+ co-doped antimony–germanate glass and double-clad optical fiber were studied. The concentration of lanthanides, which has shown the highest upconversion emission intensity at 478 nm (1G4  3H6) and 650 nm (1G4  3F4), is 1Yb2O3/0.1Tm2O3 (mol%) as a result of exciting with a laser diode (976 nm). The lifetime of 2F5/2 (Yb3+) level decreases from 781 μs to 71 μs in the presence of Tm3+ 0.1–0.75 mol% respectively. Luminescence decay curve of glass co-doped with 1Yb2O3/0.75Tm2O3 suggests donor–donor fast migration followed by Tm3+  Yb3+ energy transfer. Glass characterized by highest intensity of upconversion luminescence (1Yb2O3/0.1Tm2O3 mol%) was used as core of double-clad optical fiber made by modified rod-in-tube method. Mechanisms influencing differences in upconversion amplified spontaneous emission of the fabricated optical fiber and bulk glass were discussed. Reabsorption of the amplified spontaneous emission signal along the fibre resulting from Tm3+:3H6  1G4, transition was observed.  相似文献   

3.
Yb3+-doped langbeinite salts were prepared by the solid solution method. X-ray diffraction patterns and vibrational spectroscopy confirmed that all obtained phases are highly pure, iso-structural and they crystallize in the cubic system with the space group P213. The emission luminescence comes from the 2F5/2  2F7/2 transition of Yb3+ ions. Moreover, intense blue cooperative emission was observed at 476 nm under excitation in the near infrared at 975 nm.  相似文献   

4.
《Materials Research Bulletin》2006,41(8):1496-1502
The frequency upconversion properties of Er3+/Yb3+-codoped heavy metal oxide lead–germanium–bismuth oxide glasses under 975 nm excitation are investigated. Intense green and red emission bands centered at 536, 556 and 672 nm, corresponding to the 2H11/2  4I15/2, 4S3/2  4I15/2 and 4F9/2  4I15/2 transitions of Er3+, respectively, were simultaneously observed at room temperature. The influences of PbO on upconversion intensity for the green (536 and 556 nm) and red (672 nm) emissions were compared and discussed. The optimized rare earth doping ratio of Er3+ and Yb3+ is 1:5 for these glasses, which results in the stronger upconversion fluorescence intensities. The dependence of intensities of upconversion emission on excitation power and possible upconversion mechanisms were evaluated and analyzed. The structure of glass has been investigated by means of infrared (IR) spectral analysis. The results indicate that the Er3+/Yb3+-codoped heavy metal oxide lead–germanium–bismuth oxide glasses may be a potential materials for developing upconversion fiber optic devices.  相似文献   

5.
The metallic silver nanoparticles (NPs) was introduced into the Er3+/Ce3+/Yb3+ tri-doped tellurite glasses with composition TeO2–ZnO–La2O3 to improve the 1.53 μm band fluorescence. The UV/Vis/NIR absorption spectra, 1.53 μm band fluorescence spectra, fluorescence lifetimes, X-ray diffraction (XRD) curves, differential scanning calorimeter (DSC) curves and transmission electron microscopy (TEM) image of tri-doped tellurite glasses were measured, together with the Judd–Ofelt intensity parameters, emission cross-sections, absorption cross-sections and radiative quantum efficiencies were calculated to investigate the effects of silver NPs on the 1.53 μm band spectroscopic properties of Er3+ ions, structural nature and thermal stability of glass hosts. It is shown that Er3+/Ce3+/Yb3+ tri-doped tellurite glasses can emit intense 1.53 μm band fluorescence through the combined energy transfer (ET) processes from Yb3+ to Er3+ ions and Er3+ to Ce3+ ions under the 980 nm excitation. At the same time, the introduction of an appropriate amount of silver NPs can further improve the 1.53 μm band fluorescence owing to the enhanced local electric field effect induced by localized surface Plasmon resonance (LSPR) of silver NPs and the possible energy transfer from silver NPs to Er3+ ions, and an improvement by about 120% of fluorescence intensity is found in the studied Er3+/Ce3+/Yb3+ tri-doped tellurite glass containing 0.5 mol% amount of silver NPs with average diameter of ∼15 nm. The energy transfer mechanisms from Yb3+ to Er3+ ions and Er3+ to Ce3+ ions were also quantitatively investigated by calculating energy transfer microparameters and phonon contribution ratios. Furthermore, the thermal stability of glass host increases slightly with the introduction of silver NPs while the glass structure maintains the amorphous nature. The results indicate that the prepared Er3+/Ce3+/Yb3+ tri-doped tellurite glass with an appropriate amount of silver NPs is an excellent gain medium applied for 1.53 μm band EDFA pumped with a 980 nm laser diode (LD).  相似文献   

6.
《Materials Letters》2007,61(11-12):2200-2203
Er3+/Tm3+/Yb3+ tridoped oxyfluoride glass ceramics was synthesized in a general way. Under 980 nm LD pumping, intense red, green and blue upconversion was obtained. And with those primary colors, multicolor luminescence was observed in oxyfluoride glass ceramics with various dopant concentrations. The red and green upconversion is consistent with 4F9/2  4I15/2 and 2H11/2, 4S3/2  4I15/2 transition of Er3+ respectively. While the blue upconversion originates from 1G4  3H6 transition of Tm3+. This is similar to that in Er3+/Yb3+ and/or Tm3+/Yb3+ codoped glass ceramics. However the upconversion of Tm3+ is enhanced by the energy transfer between Er3+ and Tm3+.  相似文献   

7.
The Bi3+/Yb3+ ion co-doped 55SiO2–20Al2O3–5Na2CO3–20CaF2 glasses are synthesized successfully by a conventional melting-quenching method. High efficient quantum cutting involving the emission of two near-infrared photons for one ultraviolet photon absorbed is realized in the oxyfluoride glasses co-doped with Bi3+ and Yb3+. An intense characteristic near-infrared emission around 977 nm of Yb3+:2F5/2  2F7/2 transition is obtained when the 303 nm is as excitation wavelength to induce the 1S0  3P1 transition of Bi3+. The maximum quantum efficiency of our glasses is estimated to be 164.3%. The energy transfer mechanism is proposed to be a cooperative energy transfer via second-order down-conversion process. The glasses could be a potential quantum cutting converter to improve the photovoltaic energy conversion efficiency of crystalline Si solar cells via spectrum modification.  相似文献   

8.
《Optical Materials》2014,36(12):2085-2089
Processes involving visible to infrared energy conversion are presented for Pr3+–Yb3+ co-doped fluoroindate glasses. The emission in the visible and infrared regions, the luminescence decay time of the Pr3+:3P0  3H4 (482 nm), Pr3+:1D2  3H6 (800 nm), Yb3+:2F5/2  2F7/2 (1044 nm) transitions and the photoluminescence excitation spectra were measured in Pr3+ samples and in Pr3+–Yb3+ samples as a function of the Yb3+ concentration. In addition, energy transfer efficiencies were estimated from Pr3+:3P0 and Pr3+:1D2 levels to Yb3+:2F7/2 level. Down-Conversion (DC) emission is observed due to a combination of two different processes: 1-a one-step cross relaxation (Pr3+:3P0  1G4; Yb3+:2F7/2  2F5/2) resulting in one photon emitted by Pr3+ (1G4  3H5) and one photon emitted by Yb3+ (2F7/2  2F5/2); 2-a resonant two-step first order energy transfer, where the first part of energy is transferred to Yb3+ neighbor through cross relaxation (Pr3+:3P0  1G4; Yb3+:2F7/2  2F5/2) followed by a second energy transfer step (Pr3+:1G4  3H4; Yb3+:2F7/2  2F5/2). A third process leading to one IR photon emission to each visible photon absorbed involves cross relaxation energy transfer (Pr3+:1D2  3F4; Yb3+:2F7/2  2F5/2).  相似文献   

9.
Eu3+, Er3+ and Yb3+ co-doped BaGd2(MoO4)4 two-color emission phosphor was synthesized by the high temperature solid-state method. The structure of the sample was characterized by XRD, and its luminescence properties were investigated in detail. Under the excitation of 395 nm ultraviolet light, the BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ phosphor emitted an intense red light at 595 and 614 nm, which can be attributed to 5D0  7F1 and 5D0  7F2 transitions of Eu3+, respectively. The phosphor will also show bright green light under 980 nm infrared light excitation. The green emission peaks centred at 529 and 552 nm, were attributed to 4H11/2  4I15/2 and 4S3/2  4I15/2 transitions of Er3+, respectively. It indicated that the two-color emission can be achieved from the same BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ host system based on the different pumping source, 395 nm UV light and 980 nm infrared light, respectively. The obtained results showed that this kind of phosphor may be potential in the field of multi-color fluorescence imaging and anti-counterfeiting.  相似文献   

10.
《Advanced Powder Technology》2014,25(5):1449-1454
Rod-like and flake-like up-converting Y2O3:Yb3+/Ho3+ particles which are composed of nanoparticles with size less than 100 nm, are prepared by a simple hydrothermal processing at 473 K (3 h) followed by additional thermal treatment at 1373 K (3 and 12 h). The effect of precursor pH value on the formation of Y2O3:Yb3+/Ho3+ is followed through X-ray powder diffractometry (XRPD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Structural refinement confirms formation of the cubic bixbyte structure (S.G. Ia-3) with the non-uniform accommodation of dopants at C2 and S6 cationic sites. Under 978 nm laser excitation, strong green (530–570 nm) up-conversion is observed in all samples. The emission shows a decrease in intensity with an increase in external temperature, indicating FIR (fluorescence intensity ratio) based temperature sensing behavior of 0.52% for the 5F4  5I8/5S2  5I8 transitions.  相似文献   

11.
《Materials Research Bulletin》2013,48(11):4729-4732
Novel Er3+/Yb3+ co-doped BaTi2O5–Gd2O3 spherical glasses have been fabricated by aerodynamic levitation method. The thermal stability, upconversion luminescence, and magnetic properties of the present glass have been studied. The glasses show high thermal stability with 763.3 °C of the onset temperature of the glass transition. Red and green emissions centered at 671 nm, 548 nm and 535 nm are obtained at 980 nm excitation. The upconversion is based on a two-photon process by energy transfer, excited-state absorption, and energy back transfer. Yb3+ ions are more than Er3+ ions in the glass, resulting in efficient energy back transfer from Er3+ to Yb3+. So the red emission is stronger than the green emissions. Magnetization curves indicate that magnetic rare earth ions are paramagnetic and the distribution is homogeneous and random in the glass matrix. Aerodynamic levitation method is an efficient way to prepare glasses with homogeneous rare earth ions.  相似文献   

12.
《Optical Materials》2014,36(12):2561-2564
In this paper, we report the preparation and spectroscopic properties of Yb2+-doped silica-based glass prepared by the solid state reaction using the oxyhydrogen flame fusing process. The glass exhibits broadband emission in the visible region due to a 5d–4f transition of the rare earth ions. The emission peak wavelength and bandwidth are especially 505 nm and 147 nm for Yb2+-doped silica-based glass at the room temperature. The color coordinate calculation shows that the Yb2+-doped silica-based glass has a better color coordinate (0.28, 0.37) in the white light region.  相似文献   

13.
In the present study, we report the formation of transparent glass-ceramics containing BaGdF5 nanocrystals under optimum ceramization of SiO2–BaF2–K2O–Sb2O3–GdF3–Eu2O3 based oxyfluoride glass and the energy transfer mechanisms in Eu2+  Eu3+ and Gd3+  Eu3+ has been interpreted through luminescence study. The modification of local environment surrounding dopant ion in glass and glass ceramics has been studied using Eu3+ ion as spectral probe. The optimum ceramization temperature was determined from the differential scanning calorimetry (DSC) thermogram which revealed that the glass transition temperature (Tg), the crystallization onset temperature (Tx), and crystallization peak temperature (Tp) are 563 °C, 607 °C and 641 °C, respectively. X-ray diffraction pattern of the glass-ceramics sample displayed the presence of cubic BaGdF5 phase (JCPDS code: 24-0098). Transmission electron microscopy image of the glass-ceramics samples revealed homogeneous distribution of spherical fluoride nanocrystals ranging 5–15 nm in size. The emission transitions from the higher excited sates (5DJ, J = 1, 2, and 3) as well as lowered asymmetry ratio of the 5D0  7F2 transition (forced electric dipole transition) to that of the 5D0  7F1 transition (magnetic dipole) of Eu3+ in the glass-ceramics when compared to glass sample demonstrated the incorporation of dopant Eu3+ ions into the cubic BaGdF5 nanocrystals with higher local symmetry with enhanced ionic nature. The presence of absorption bands of Eu2+ ions and Gd3+ ions present in the glass matrix or fluoride nanocrystals in the excitation spectra of Eu3+ by monitoring emission at 614 nm indicated energy transfer from (Eu2+  Eu3+) and (Gd3+  Eu3+) in both glass and glass-ceramics samples.  相似文献   

14.
《Optical Materials》2005,27(3):475-479
Optical spectroscopy of the green emission of erbium in KGd(WO4)2 (KGW) single crystals codoped with ytterbium ions is investigated. To do this, we firstly grew good-optical-quality KGW single crystals doped with Er3+ and Yb3+ at several dopant concentrations by the Top-seeded-solution-growth slow-cooling method (TSSG). Green photoluminescence of Er3+ in KGW host was studied at room temperature (RT) and low temperature (10 K) by means of Yb3+ sensitization after infrared excitation at 981 nm (10194 cm−1). We calculated the emission and gain cross-sections and compared these with those of other known Er3+-doped laser materials like LiYF4 :Er (YLF:Er) and Y3Al5O12:Er (YAG:Er) at RT. Our study also focused on determining the optimal concentration of ions for generating the most intense green emission. We measured the lifetime of the green emission after infrared pump at several Yb3+ concentrations. From the low-temperature emission experiments, we determined the energy position of the sublevels of the ground state of erbium.  相似文献   

15.
Spectroscopic parameters of a novel Nd3+-activated barium borate (BBONd) glass have been analyzed for broadband laser amplification. The Judd–Ofelt (JO) intensity parameters were determined through a systematic analysis of the absorption spectrum of Nd3+ ions in the BBONd glass. High values of the JO intensity parameters reveal a great centro-symmetrical loss of the Nd3+ sites and high covalency degree of the ligand field. The very high Ω6 intensity parameter value makes evident both a great structural distortion of the Nd3+ sites and a strong electron–phonon coupling between Nd3+ and free OH ions, which is consistent with the phonon energy maximum (3442.1 cm−1) recorded by Raman spectroscopy. This strong electron–phonon coupling favors high effective bandwidth and gain bandwidth values of the laser emission (4F3/2  4I11/2) of Nd3+ ions. The electric-dipole oscillator strengths of all the Nd3+ absorption transitions, and in particular that of the hypersensitive transition (4I9/2  4G5/2), are enhanced by this great structural distortion of the host. Broadband laser amplification of the 4F3/2  4I11/2 emission (1062 nm) of Nd3+ ions in the BBONd glass pumped at 805 nm (4I9/2  4F5/2 + 2H9/2) is evaluated through the main fluorescent parameters in competition with non-radiative processes. In general, the BBONd glass exhibits spectroscopic parameters comparable with those reported in the literature for broadband laser amplification into the IR region.  相似文献   

16.
Photoluminescence (PL), photo-stimulated luminescence (PSL), and thermoluminescence (TL) properties of a Ce-doped CaB2O4 crystal were studied. The Ce-doped crystal was prepared by the simple solidification method using a Pt crucible under nitrogen atmosphere. A PL emission band in the 350–370 nm wavelength range was obtained under excitation at 325 nm owing to the 5d (t2g)–4f (2F5/2, 2F7/2)-allowed transition of the Ce3+ emission center. The fluorescence quantum efficiency and the decay time of Ce3+ were estimated to be about 70% and 29 ns, respectively. The 5d–4f emission band of Ce3+ also appeared in the 350–370 nm wavelength range in the TL and PSL spectra. Good linear TL and PSL responses were observed in the 1–1000 mGy and 1–10,000 mGy X-ray dose range, respectively.  相似文献   

17.
《Optical Materials》2014,36(12):2577-2580
In the paper antimony–silicate glass and double-clad optical fiber co-doped with ytterbium and holmium ions were investigated. Absorption spectra in infrared (FT-IR) showed characteristic bands: 445, 605, 1037, 1168 cm−1 coming from the vibration of chemical bonds of SbO3 and SiO4, respectively. The combination of relatively low phonon energy with a capability for greater separation (avoiding clustering) of optically active centers in the fabricated glasses should allow an effective expansion of spontaneous emission band. The highest intensity of emission at the wavelength of λe = 1950 nm resulting from energy transfer between Yb3+  Ho3+ ions was observed in the glass co-doped with 1 mol% Yb2O3:0.5 mol% Ho2O3. As a result of the optical pumping at the wavelength of 976 nm in the produced optical fiber, strong and narrow band of amplified spontaneous emission (ASE) around 2.1 μm, corresponds to the 5I7  5I8 transition, were obtained.  相似文献   

18.
K4BaSi3O9:Eu3+ polycrystals were synthesized by solid state method. X-ray powder diffraction measurements confirmed structure of the samples. The excitation and the emission spectra of orthorhombic K4BaSi3O9 doped with Eu3+ were investigated. The excitation spectrum exhibits a broad band with maximum at 220 nm corresponding to the charge transfer (CT) transition between O2 and Eu3+ ions and smaller 4f–4f transitions. The emission of investigated phosphor was excited at 395 nm and has quantum efficiency (QE) equal 27%. The emission maximum at 616.5 nm was assigned to the 5D0  7F2 transition of Eu3+ ions. The luminescence decay profiles as well as the thermal quenching were measured and analyzed. K4BaSi3O9:Eu3+has high temperature quenching of the emission T0.5 = 335 °C.  相似文献   

19.
This paper reports the fabrication and characterization of Eu3+/Nd3+ co-doped phosphate (PNE) glasses and glass–ceramics as a function of Eu3+ concentration. The precursor glasses were prepared by the conventional melt quenching technique and the opaque glass–ceramics were obtained by heating the precursor glasses at 450 °C for 30 h. The structural and optical properties of the glass and glass–ceramics were analyzed by means of X-ray diffraction, Raman spectroscopy, UV–VIS–IR absorption spectroscopy, photoluminescence spectra and lifetimes. The amorphous and crystalline structures of the precursor glass and opaque glass–ceramic were confirmed by X-ray diffraction respectively. The Raman spectra showed that the maximum phonon energy decreased from 1317 cm−1 to 1277 cm−1 with the thermal treatment. The luminescence spectra of the glass and glass–ceramic samples were studied under 396 nm and 806 nm excitation. The emission intensity of the bands observed in opaque glass–ceramic is stronger than that of the precursor glass. The luminescence spectra show strong dependence on the Eu3+ ion concentration in the Nd3+ ion photoluminescence (PL) intensity, which suggest the presence of energy transfer (ET) and cross-relaxation (CR) processes. The lifetimes of the 4F3/2 state of Nd3+ ion in Eu3+/Nd3+ co-doped phosphate glasses and glass–ceramics under 806 nm excitation were measured. It was observed that the lifetimes of the 4F3/2 level of Nd3+ of both glasses and glass–ceramics decrease with the increasing Eu3+ concentration. However in the case of opaque glass–ceramics the lifetimes decrease only 16%.  相似文献   

20.
The vacuum ultraviolet spectroscopic properties of GdOCl:Re3+ (Re3+ = Ce3+, Tb3+, Eu3+, and Dy3+) are investigated in detail for the first time. The host absorption band is determined to be around 179 nm, and the f–d transition bands as well as the charge transfer bands are assigned. Upon 179 nm excitation, Re3+ (Re3+ = Ce3+, Tb3+, Eu3+, Dy3+) ions shown their characteristic emissions. Energy transfers from Gd3+ to Re3+ ion were observed. A broad band ranging from 350 to 400 nm corresponding to the d–f transition of Ce3+ is observed. Eu3+ has typical red emission with the strongest peak at 620 nm; Tb3+ shows characteristic transition of 5D3,4  7Fj, and its spin-forbidden and spin-allowed f–d transitions in VUV region are calculated with Dorenbos’ equations, these calculated values agree well with the experimental results. Dy3+ presents yellow emission (4F9/2  6H13/2) with the strongest peak at 573 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号