首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transparent polymers are considered as alternative low-cost mold materials in UV nanoimprint lithography (UV-NIL). Here, we demonstrate a nanoimprint process with molds made of rigid polymers novel for this application. These polymer molds are found to show high performance in the patterning with UV-NIL. Sub-50 nm structures were fabricated with this process.  相似文献   

2.
A novel size reduction process using electron beam lithography (EBL) combining with wet etching technique is developed as a possible solution for producing large area and low cost nanopattern stamp for UV-based nanoimprint lithography (UV-NIL). In the first step, a microstructure stamp with 1.4 μm periodical pore array and aspect ratio of 1:1 was formed over a 1 inch2 area on a quartz substrate. This process was carried out using common electron beam lithography (EBL) equipment, which was easily available in the modern integrated circuits (IC) semiconductor factory. Afterwards, with a controlled wet etching technique, the pore array was changed into tip patterns with the line width below 100 nm and the period keeping as before. The uniformities and nanopattern accuracies were investigated to identify its possibility as a UV-NIL stamp by AFM and SEM. Finally, as a demonstration, the as obtained stamp was used as a positive stamp to replicate the nanotips into UV-curable resist successfully by a UV-NIL process. The method developed for the mold of nanoimprint lithography would be a simple and low price approach to fabricate large area UV-NIL stamp and the nanotip array structures would be widely used in two dimensional (2D) photonic crystal application.  相似文献   

3.
《Microelectronic Engineering》2007,84(5-8):925-927
Nanoimprint lithography (NIL) is a cost efficient technique for the mass production of nanostructures. We demonstrate alignment accuracies in the range of 100 nm and below in UV-based nanoimprint lithography (UV-NIL) using a simple optical technique. The advantages of this technique are the relative simplicity of the marker-design and the whole setup combined with the possibility of an upgrade of existing equipment and still ultra-high precision alignment capabilities.  相似文献   

4.
In this paper, we present the results of gold nanoparticles fabrication on large area by soft UV nanoimprint lithography (UV-NIL) and lift-off process for antibodies sensing. For this fabrication, the hard polydimethylsiloxane (H-PDMS) is used as flexible mold material. A simple AMONIL/PMMA bilayer is used to transfer patterns by etching the substrate with a suitable RIE process. The UV-NIL process has enabled to obtain gold nanoparticles with a diameter about 160 nm on a zone of 1 mm2. For bioplasmonic applications, the sensing of Anti-Biotin was studied.  相似文献   

5.
Si master molds are generally patterned by electron-beam lithography (EBL) that is known to be a time-consuming nanopatterning technique. Thus, developing mold duplication process based on high throughput technique such as nanoimprint lithography can be helpful in reducing its fabrication time and cost. Moreover, it could be of interest to get inverted patterns (holes instead of pillars) without changing the master EBL process. In this paper, we propose a two step process based on thermal nanoimprint lithography (T-NIL) (step 1) and soft UV assisted nanoimprint lithography (UV-NIL) (step 2) to invert a master EBL mold. After the two inversion steps, the grand-daughter Si mold exhibits the same pattern polarity as the EBL mold. For step 1, pattern transfer using ion beam etching (IBE) of a thin metallic underlayer is the critical step for dimension control due to the low NXR1020 resistance. For step 2, the optimized reactive ion etching (RIE) step allows transfer with good anisotropy even for nanostructures at the 50 nm-scale. For structures larger than 100 nm, this inversion process has been successfully applied to large field replication (up to 1.5 cm2) on whole wafer.  相似文献   

6.
The use of working stamps for nanoimprint lithography is highly interesting for a number of reasons like an increased lifetime and often a better manufacturability of the master stamp. We present results on the use of Ormostamp as a material for working stamps in UV-NIL. Imprinting properties and anti-sticking treatments have been investigated. So far a minimum feature size of 50 nm can be achieved.  相似文献   

7.
《Microelectronic Engineering》2007,84(5-8):909-911
Novel reproduction technique for nanostructures is newly proposed based on nanoimprint and nanocasting lithography. First, a master nanostructure is replicated using fluorinated polymer by conventional thermal nanoimprint. Then, the master structure is reproduced using the replicated fluorinated polymer by nanocasting lithography. Using the fluorinated polymer as a mold, fine pattern is successfully transferred without releasing failure. Also, low cost reproduction is realized by nanocasting lithography without using special tools and materials. Using the proposed method, reproduction of the anti-reflection structure having 250 nm feature size is successfully demonstrated.  相似文献   

8.
As a potential candidate for the next generation of nanolithography, nanoimprint lithography (NIL) has drawn ever-increasing worldwide attention. It involves physical contact to overcome the optical limits occurring in sub-100 nm photolithography. Affordable tool cost is one of major attractive points of NIL. This work proposes the idea of incorporating carbon nanotubes (CNTs) in the resin used for ultraviolet nanoimprinting (UV-NIL). CNTs can make the resin electrically conductive when mixed with it. Patterns imprinted in the CNT-mixed resist can then be used to replace conductive metal structures directly. This enhances the productivity of basic UV-NIL where the imprinted patterns are used as sacrificial etch masks. In this work, several types of CNTs were purified chemically and dispersed before being mixed with UV-NIL resin using ultrasonic vibration. On drops of CNT-mixed resin, soft UV-NIL was performed using a polydimethylsiloxane (PDMS) stamp with a minimum feature size in the range of 200 nm. Even with increased resin viscosity due to the addition of CNTs, UV imprinting down to 200 nm was successfully done with moderate pattern fidelity. The loading rate of nanotubes should be minimized to prevent the increased viscosity from degrading the pattern transfer resolution. The electrical conductivity of CNT-mixed resist increases with the loading of CNTs. Therefore, the trade-off between the electrical properties and pattern transfer resolution needs to be optimized carefully.  相似文献   

9.
纳米压印光刻技术已被证实是纳米尺寸大面积结构复制的最有前途的下一代技术之一。这种速度快、成本低的方法成为生物化学、μ级流化学、μ-TAS和通信器件制造以及纳米尺寸范围内广泛应用的一种日渐重要的方法,如生物医学、纳米流体学、纳米光学应用、数据存储等领域。由于标准光刻系统的波长限制、巨大的开发工作量、以及高昂的工艺和设备成本,纳米压印光刻技术可能成为主流IC产业中一种真正富有竞争性方法。对细小到亚10nm范围内的极小复制结构,纳米压印技术没有物理极限。从几种纳米压印光刻技术中选择两种前景广阔的方法——热压印光刻(HEL)和紫外压印光刻(UV-NIL)技术给予介绍。两种技术对各种各样的材料以及全部作图的衬底大批量生产提供了快速印制。重点介绍了HEL和UV-NIL两种技术的结果。全片压印尺寸达200mm直径,图形分辨力高,拓展到纳米尺寸范围。  相似文献   

10.
The filling behavior of resin during UV nanoimprint lithography (UV-NIL) was observed by using a “midair structure mold” and by changing the imprint pressure. The midair structure molds were fabricated by electron beam lithography (EBL) using hydrogen silsesquioxane (HSQ) as a negative tone resist. After the fabrication of midair structure mold, two types of surface treatment molds, which were with or without release coating, were prepared. Using these molds, the filling behavior of a UV curable resin was investigated at various pressures. The results indicate that a pressure of approximately 1.2 MPa is necessary for complete filling in the case of molds treated with a release agent. This method demonstrates effect of a release coating for UV-NIL.  相似文献   

11.
《Microelectronic Engineering》2007,84(5-8):973-976
The “demolding” is the important key for UV nanoimprint lithography (UV-NIL) which attracts a lot of attention recently as microfabrication technique. Then, we present in this paper, new fluorinated mold material and new fluorinated photosensitive polymer which are suitable for the UV-NIL because of their high transparency and excellent mold-release characteristics. By using our mold material “F-template”, the process cost can be drastically reduced because it can be used as replicated mold instead of using expensive quartz master mold. F-template requires no releasing agent is another advantage. We also developed photosensitive polymer “NIF-A-1” which has high transparency, good mold-releasing ability and good dry etching resistance. Unlike the common photosensitive polymer, NIF-A-1 did not need a releasing agent on the mold.  相似文献   

12.
UV-based nanoimprint lithography (UV-NIL) is a cheap and fast way to imprint patterns ranging from nanometres to micrometres. However, commonly used equipment can be expensive and require a clean room infrastructure. Here we present the design and testing of a simple UV-NIL system based on a light emitting diode. The current design permits imprints of 10 × 10 mm2 in size using a 25 × 25 mm2 master. This printer can be used in a semi-clean environment such as a laminar flow bench. The imprinter was used to imprint photoresists as well as UV sensitised hydrogels. The best results were obtained using SU-8 photoresist with features down to 50 nm in size, only limited by the imprint master. Patterns in SU-8 resist were also transferred into silicon substrates by reactive ion etching demonstrating its full potential as a lithographic tool.  相似文献   

13.
The periodic arrays of nanostructure were successfully patterned on Si wafers by ultraviolet nanoimprint lithography (UV-NIL) using nanosphere lithography (NSL). Two-dimensional (2D) well ordered self-assembled arrays were obtained on Si wafer by using nanosphere and the tilted-drain method. We tried to combine two techniques and hard mold of Si mold for NIL and polymer mold of acrylate-based polymer were fabricated by NSL. The Si master mold and polymer mold were formed by Cr lift-off and ICP-RIE process. The surface has a low surface energy at the interface with 1H, 1H, 2H, 2H-perfluorooctyl-trichlorosilane (FOTS) vapor-coating, which can eliminate the problem of the adherence to the surface of the mold during demolding. Finally, nanopatterns were formed by UV-NIL, where the residual layer was not observed.  相似文献   

14.
Ultraviolet nanoimprint lithography (UV-NIL) is a powerful tool for nanoscale fabrication. However, the replication of high-density, high-aspect-ratio mold patterns by UV-NIL is very difficult because of the strong forces required to release the replicate from the mold. We used a glassy carbon (GC) mold with an antireflective structure, fabricated by irradiation with an oxygen-ion beam, to produce a high-density, high-aspect-ratio pattern, and we evaluated its release properties. The fabricated GC surface contained high-aspect-ratio conical structures with pitch of less than 100 nm. After fabrication of the antireflective structure, the mold surface was coated with chromium and a fluorinated silane coupling agent. By using this treatment and a peel motion during mold release, faithful replication of the mold structure in photocurable resin was possible. The release force increased with increasing mold surface area; the surface area effect is therefore the main factor in the mold-release step.  相似文献   

15.
In this paper, we present an alternative technique to the well-known electron beam lithography in order to realize nanoholes in the silicon substrates for biological applications. The used technique is soft UV nanoimprint lithography (UV-NIL). We optimized the fabrication of silicon based supports obtained by soft UV-NIL and reactive ion etching to carry out very large arrays of nanoholes. The resolution limits are investigated when using poly(dimethylsiloxane) as flexible mold material. RIE conditions are initiated to limit the lateral mask resist etch.  相似文献   

16.
IntroductionNanoimprint Lithography is a well-acknowl-edged low cost, high resolution, large area pattern-ing process. It includes the most promising methods,high-pressure hot embossing lithography (HEL) [2],UV-cured imprinting (UV-NIL) [3] and micro contactprinting (m-CP, MCP) [4]. Curing of the imprintedstructures is either done by subsequent UV-lightexposure in the case of UV-NIL or by cooling downbelow the glass transition temperature of the ther-moplastic material in case of HEL…  相似文献   

17.
软模板的制作是紫外纳米压印中关键的技术,模版的分辨率直接决定了压印图形的最小分辨率。使用具有高度均匀、100nm级孔洞阵列结构的多孔氧化铝作为母版,使用基于液态浇铸的硅油稀释聚二甲基硅氧烷(硅油和聚二甲基硅氧烷的质量比为1:2)法制备出具有规则点阵结构的软模板。通过SEM和AFM表征发现,特征图形得到了有效转移,特征尺度保持在100nm左右。相对于传统的模板制备方法,此方法成本低、流程简单、适合大规模生产,是一种非常有前途的软模板制备方法。  相似文献   

18.
We report on results of fabrication and optical characterisation of sub-250 nm periodic gold nanohole arrays on glass by using UV nanoimprint lithography (UV-NIL) combined with both reactive ion etching (RIE) and Cr/Au lift-off processes. The transmission spectra of the fabricated nanohole gratings were measured for different hole diameters and periods. We also show preliminary results of chemical sensing after surface modification of the gold hole arrays. In agreement with the theoretical prediction, we found that any change in the dielectric index of the surrounding environment of the metallic array produces a transmission peak red shift.  相似文献   

19.
Ultraviolet nanoimprint lithography (UV-NIL) is a promising technology for the fabrication of sub-10-nm features. Research has focused on employing a large-area stamp to improve UV-NIL throughput, but a large-area stamp makes it difficult to obtain an acceptable uniform residual layer thickness and/or avoid defects such as air entrapment. This paper presents the development of a single-step UV-NIL tool in which a 4-in. Pyrex stamp is first used to imprint coated resin against a 4-in. Si wafer in a low vacuum environment. Pressurized N2 is subsequently applied to the wafer bottom to improve the quality of imprint results. This UV-NIL tool was used to successfully imprint a 4-in. stamp with recessed patterns engraved over the entire stamp areas onto a 4-in. Si wafer.  相似文献   

20.
《Microelectronic Engineering》2007,84(5-8):963-966
Nanoimprinting lithography (NIL) is a promising technology to produce sub-50 nm half-pitch features on silicon- and/or quartz-based substrates. It is well-known as the next generation lithography. Especially, the UV-nanoimprint lithography technology has advantages of the simple process, low cost, high replication fidelity and relatively high throughput. In this paper, chip-size multi-head imprinting unit with compliance stage and overlay/alignment system with moiré and dual grating unit are proposed in order to fabricate sub-50 nm half-pitch patterns. These systems are set-up and performed in single-step nanoimprinting tool (ANT-4) which has several functional units for nanoimprinting process. Using the UV-NIL tool, 50 nm, 70 nm and 100 nm half-pitch dot and line patterns are obtained. Also, 20 nm overlay/alignment accuracy is obtained by means of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号