首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper analyses the risks of corrosion damage and of accelerated fatigue damage by liquid lead–bismuth eutectic (LBE) of the T91 steel for reliability assessment of accelerating driven systems (ADS). The corrosion of the T91 in LBE is dependent on the oxygen concentration in the LBE. Dissolution process occurs when the oxygen concentration is low while a protective oxide film forms under high oxygen concentration. The low cycle fatigue resistance of the T91 steel is reduced by a factor at least of 2 when cycling at 300 °C in LBE instead of air. A pre immersion of T91 fatigue specimens in a LBE bath at 600 °C for about 600 h and with a dissolved oxygen concentration less than 10−10 wt% is detrimental on the fatigue resistance. However, an oxide layer resulting from high oxygen concentration appears to be protective against corrosion–deformation interaction.  相似文献   

2.
Galvanized reinforcing steel with a cerium conversion coating have been studied in Ca(OH)2 saturated solution with and without chlorides. Electrochemical results reveal that cerium conversion coating provides an effective corrosion resistance compared to galvanized steel at short immersion times, 5 days without Cl ions and 2 days with Cl in the solution. The results suggest that cerium layer inhibits hydrogen evolution on the galvanized coating at early stages. At longer immersion times, galvanized steel with cerium conversion coating and galvanized steel describe similar corrosion behaviour in both electrolytes. There is not significant differences in the corrosion current density, about 5 μA/cm2, due to the presence of chlorides ions in the Ca(OH)2 saturated solution up to approximately 17 days of immersion. At longer immersion times, from 30 to 50 days, specimens in the chlorides containing solution exhibit higher corrosion activity than that recorded in the free Cl solution revealing that cerium layer cannot inhibit the localized attack promoted by chloride ions.  相似文献   

3.
The development of a biodegradable metallic implant demands a precisely defined degradation profile and adequate mechanical properties. Mg has been proposed for this purpose but it has an excessively high corrosion rate and insufficient yield strength. In the present work pure Mg mechanically reinforced by a powder metallurgy (Mg(PM)) route and treated with KF was used. The effect of chlorides, at the physiological level, on four fluoride conversion coatings (F-CC) formed on Mg(PM) was evaluated comparatively. The behavior of Mg(PM) during fluoride treatments (0.01 M–0.3 M fluoride-containing solutions) before and after the addition of chlorides (8 g L? 1 NaCl) was investigated by conventional corrosion techniques and by scanning electrochemical microscopy (SECM) complemented with SEM observations and EDX analysis. Results showed that the composition and the microstructural characteristics of the F-CCs as well as their corrosion behavior change with KF concentration and immersion time. Treatments in the 0.01 M–0.1 M KF range prove to be effective to protect Mg(PM) against corrosion in the absence of chlorides while higher KF solution concentration (0.3 M) adversely affects the corrosion resistance of this metal. In the presence of chloride ions the F-CCs progressively lose their fluoride content and their corrosion resistance at a rate that depends on the treatment conditions. Such temporary corrosion protection is appropriate for biodegradable implants.  相似文献   

4.
In this study, Nano particles were co-deposited with chromium from a hexavalent chromium bath by the conventional electrodeposition onto steel substrate as a cathode. The main goal of this work is to improve the wear and corrosion resistance, microhardness, coefficient of friction and select the best coating condition to satisfy these parameters using combined Analytic Hierarchy Process (AHP) – Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. The dependence of the mentioned parameters was investigated in relation to the Al2O3, TiO2, SiO2 concentration in bath and particle size and it was found that the best tribological behavior improves by decreasing the particle size and increasing the particles concentration in the bath up to 10 g/l. AHP–TOPSIS method led to choose the Cr–Al2O3 nanocomposite coating achieved at 10 g/l Al2O3 content with mean particle size of 10 nm as the preferred alternative which is in good accordance with empirical findings.  相似文献   

5.
Ni + W + Si coatings were prepared by nickel deposition from a bath containing a suspension of tungsten and silicon powders. These coatings were obtained at galvanostatic conditions, at the current density of jdep =  0.100 A cm 2 and at the temperature of 338 K. For determination of the influence of phase composition and surface morphology of these coatings on changes in the corrosion resistance, these coatings were modified in an argon atmosphere by thermal treatment at 1373 K during 1 h. A scanning electron microscope was used for surface morphology characterization of the coatings. The chemical composition of the coatings was determined by EDS and phase composition investigations were conducted by X-ray diffraction. It was found that the as-deposited coatings consist of a three-phase structure, i.e., nickel, tungsten and silicon. The phase composition for the Ni + W + Si coatings after thermal treatment is markedly different. The main peaks corresponding to Ni and W coexist with the new phases: NiW, NiWSi and a solid solution of W in Ni.Electrochemical corrosion resistance investigations were carried out in 5 M KOH, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the basis of these investigations it was found that the Ni + W + Si coatings after thermal treatment are more corrosion resistant in alkaline solution than the as-deposited coatings. The reasons for this are a reduction in the amount of free nickel and tungsten, the presence of new phases (in particular polymetallic silicides), and a decrease of the active surface area of the coatings after thermal treatment.  相似文献   

6.
The zinc–aluminum (Zn–Al) alloy coating with excellent wear and corrosion resistance was fabricated on the surface of magnesium substrate (AZ31) using thermal diffusion technique. The microstructure, phase constitution and chemical composition were investigated. The experimental observation exhibited that the interfacial microstructures were composed of network eutectic structures and lamellar eutectoid structures at heating temperature of 350 °C for holding time of 30 min under 0.1 MPa in a vacuum of 10−3 Pa. X-ray diffraction (XRD) pattern analysis identified that α-Mg, Mg7Zn3 and MgZn phases were formed in the diffusion layer. The interdiffusion of Mg and Al atoms were restricted by Mg–Zn intermetallic compounds (IMCs). The value of microhardness at the diffusion layer increased due to the formation of Mg–Zn eutectic phases. This technique is beneficial to improving poor wear and corrosion resistance of magnesium alloy.  相似文献   

7.
Bioactive ceramics coated magnesium alloys with a combination of suitable mechanical strength and adjustable corrosion resistance are desired for biodegradable implants. In this study, a dense bioglass coated magnesium alloy was fabricated by uniaxial pressing and microwave hybrid heating technique. The microstructure, bond strength and corrosion behavior of the samples were evaluated by means of scanning electron microscopy, X-ray diffraction, tensile bond test, electrochemical and immersion test. It was shown that uniaxial pressing conducted at the glass transition temperature significantly densified the sol–gel derived bioglass coating, which was free of pores and micro-cracks. The compact coating structure combined with mild interfacial stress not only improved the cohesion/adhesion strength (25.8 ± 2.6 MPa) but also enhanced corrosion resistance by retarding the penetration of corrosive solution. Furthermore, the formed CaP precipitates on the surface of the coating would provide another protection for the magnesium alloy to some extent.  相似文献   

8.
An ammonia-free chemical-bath deposition was used to obtain CdSe thin films on glass substrate. The materials used in the chemical bath were cadmium chloride complexed with sodium citrate and sodium selenosulphate. The preparation conditions, especially the starting solution characteristics, such as concentration of dissolved materials, temperature, pH value as well as deposition time and immersion cycles were optimized to obtain homogeneous stoichiometric films with good adherence to the glass substrate. The films thickness was in the range of 400–500 nm with a growing time of 4 h. The material obtained was characterized by optical absorption, SEM with the energy dispersive X-ray analysis (EDS) and X-ray diffraction. The films obtained at bath temperatures of 70 and 80 °C had the hexagonal structure (of wurtzite type), with crystallite size of about 20 nm. Room temperature deposition results in films with the cubic structure and crystallite size of about 4 nm. From optical transmission data, an energy gap equal to 1.88 eV was found. The material is interesting for applications in hybrid systems for solar energy conversion.  相似文献   

9.
A novel interpenetrating C/Mg-Zn-Mn composite was fabricated by infiltrating Mg-Zn-Mn alloy into porous carbon using suction casting technique. The microstructure, mechanical properties and corrosion behaviors of the composite have been evaluated by means of SEM, XRD, mechanical testing and immersion test. It was shown that the composite had a compact structure and the interfacial bonding between Mg-Zn-Mn alloy and carbon scaffold was very well. The composite had an ultimate compressive strength of (195 ± 15) MPa, which is near with the natural bone (2–180 MPa) and about 150-fold higher than that of the original porous carbon scaffold, and it still retained half of the strength of the bulk Mg-Zn-Mn alloy. The corrosion test indicated that the mass loss percentage of the composite was 52.9% after 30 days′ immersion in simulated body fluid (SBF) at 37 ± 0.5 °C, and the corrosion rates were 0.043 mg/cm2h and 0.028 mg/cm2h after 3 and 7 days′ immersion, respectively. The corrosion products on the composite surface were mainly Mg(OH)2 and hydroxyapatite (HA).  相似文献   

10.
Incoloy 825 alloy is an alloy with high corrosion resistance but it has low strength and hardness. Increasing of hardness of the alloy is important for its wear resistance. In this study, Incoloy 825 alloy was boronized to increase its hardness. The boronizing process was carried out using the box boronizing method at 900 and 950 °C for 2, 4 and 6 h. The coating thickness that occurred by boronizing increased with the increase in temperature and time. The thickness of boride layers depending on temperature and process time was ranged from 35 to 170 μm. The presence of borides (e.g., FeB, Fe2B, CrB, NiB) was confirmed by X-ray diffraction (XRD) analysis technique. The boron compounds have shown the random distribution. The microhardness has decreased along the coating thickness (towards to the matrix).  相似文献   

11.
Plasma nitriding of ASTM F138 stainless steel samples has been carried out using dc glow discharge under 80% H2–20% N2 gas mixture, at 673 K, and 2, 4, and 7 h time intervals, in order to investigate the influence of treatment time on the microstructure and the corrosion resistance properties. The samples were characterized by scanning electron microscopy, glancing angle X-ray diffraction and conversion electron Mössbauer spectroscopy, besides electrochemical tests in NaCl aerated solution. A modified layer of about 6 μm was observed for all the nitrided samples, independent of nitriding time. The X-ray diffraction analysis shows broad γN phase peaks, signifying a great degree of nitrogen supersaturation. Besides γN, the Mössbauer spectroscopy results indicated the occurrence of γ′ and ε phases, as well as some other less important phases. Corrosion measurements demonstrate that the plasma nitriding time affects the corrosion resistance and the best performance is reached at 4 h treatment. It seems that the ε/γ′ fraction ratio plays an important role on the resistance corrosion. Additionally, the Mössbauer spectroscopy was decisive in this study, since it was able to identify and quantify the iron phases that influence the corrosion resistance of plasma nitrided ASTM F138 samples.  相似文献   

12.
To further improve the corrosion resistance and biocompatibility of Mg–Nd–Zn–Zr alloy (JDBM), a biodegradable calcium phosphate coating (Ca–P coating) with high bonding strength was developed using a novel chemical deposition method. The main composition of the Ca–P coating was brushite (CaHPO4·2H2O). The bonding strength between the coating and the JDBM substrate was measured to be over 10 MPa, and the thickness of the coating layer was about 10–30 μm. The in vitro corrosion tests indicated that the Ca–P treatment improved the corrosion resistance of JDBM alloy in Hank's solution. Ca–P treatment significantly reduced the hemolysis rate of JDBM alloy from 48% to 0.68%, and induced no toxicity to MC3T3-E1 cells. The in vivo implantation experiment in New Zealand's rabbit tibia showed that the degradation rate was reduced obviously by the Ca–P treatment and less gas was produced from Ca–P treated JDBM bone plates and screws in early stage of the implantation, and at least 10 weeks degradation time can be prolonged by the present coating techniques. Both Ca–P treated and untreated JDBM Mg alloy induced bone growth. The primary results indicate that the present Ca–P treatment is a promising technique for the degradable Mg-based biomaterials for orthopedic applications.  相似文献   

13.
Hydroxyapatite (HA) coating has been widely applied on metallic biomedical implants to enhance their biocompatibility. It has been reported that HA coating can be formed on annealed zirconium with anodic zirconium oxide nanotubular arrays after immersion in simulated biological fluid (SBF) for about 14 days. In the present study, we apply an alternative immersion method (AIM) to form presynthesized HA on ZrO2 nanotubes. The AIM-treated specimen was then moved to the SBF to evaluate the capability for the formation of HA on it. The HA coating formed after only 2 days immersion and thickened after 5 days in the SBF. The HA coating is the carbonated HA with a ratio of Ca to P of about 1.4, similar to the physiological HA containing other minor elements such as Mg and Na. The results demonstrate that the AIM treatment is indeed suitable for the zirconium oxide nanotubes and highly accelerates the formation of HA coating in comparison with the existing methods, i.e. the annealing of the as-formed zirconium oxide nanotubular arrays.  相似文献   

14.
Influence of heat treatment regime on microstructure, phase composition and adhesion of Al2O3 fiber-reinforced Ni–P electroless coating on an Al–10Si–0.3 Mg casting alloy is investigated in this work. The pre-treated substrate was plated using a bath containing nickel hypophosphite, nickel lactate and lactic acid. Al2O3 fibers pretreated with demineralised water were placed into the plating bath. Resulting Ni–P–Al2O3 coating thickness was about 12 μm. The coated samples were heat treated at 400–550 °C/1–8 h. LM, SEM, EDS and XRD were used to investigate phase transformations. Adhesion of coating was estimated using scratch test with an initial load of 8.80 N. It is found that annealing at high temperatures (450 °C and above) leads to the formation of hard intermetallic products (namely Al3Ni and Al3Ni2 phases) at the substrate–coating interface. However, as determined by the light microscopy and by the scratch test, these phases reduce the coating adhesion (compared to coatings treated by the optimal annealing regime 400 °C/1 h). The analysis of scratch tracks proves that fiber reinforcement significantly reduces the coating scaling. However, due to the formed intermetallic sub-layers, partial coating delamination may occur on the samples annealed at 450 °C and above.  相似文献   

15.
The novel interpenetrating (HA + β-TCP)/MgCa composites were fabricated by infiltrating MgCa alloy into porous HA + β-TCP using suction casting technique. The microstructure, mechanical properties and corrosion behaviors of the composites have been evaluated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical testing, electrochemical and immersion tests. It was shown that the composites had compact structure and the interfacial bonding between MgCa alloy and HA + β-TCP scaffolds was very well. The ultimate compressive strength of the composites was about 500–1000 fold higher than that of the original porous scaffolds, and it still retained quarter-half of the strength of the bulk MgCa alloy. The electrochemical and immersion tests indicated that the corrosion resistance of the composites was better than that of the MgCa matrix alloy, and the corrosion products of the composite surface were mainly Mg(OH)2, HA and Ca3(PO4)2. Meanwhile, the mechanical and corrosive properties of the (HA + β-TCP)/MgCa composites were adjustable by the choice of HA content.  相似文献   

16.
Polarization measurements were conducted to monitor the corrosion behavior of superduplex stainless steel ASTM A995M-Gr.5A/EN 10283-Mat#1.4469(GX2CrNiMo26-7-4) when exposed to a) an electrolyte containing 22,700 parts per million (ppm) of chloride ions at seven different temperatures and b) an electrolyte at 25 °C and different chloride ion concentrations (5800, 22,700, 58,000 and 80,000 ppm of Cl?). The polarization curves indicate that the passive films formed are only slightly affected by NaCl concentration, but the pitting potential decreases drastically increasing the temperature, in particular > 60 °C. The image analysis of the microstructure after potentiodynamic polarization showed that the pitting number and size vary in function of the temperature of the tested medium. Nyquist diagrams were determined by electrochemical impedance spectroscopy to characterize the resistance of the passive layer. According to Nyquist plots, the arc polarization resistance decreases increasing the temperature due to a catalytic degradation of the oxide passive films.  相似文献   

17.
A new biodegradable magnesium–zinc–strontium (Mg–Zn–Sr) alloy was developed and studied for medical implant applications. This first study investigated the alloy processing (casting, rolling, and heat treatment), microstructures, mechanical properties, and degradation properties in simulated body fluid (SBF). Aging treatment of the ZSr41 alloy at 175 °C for 8 h improved the mechanical properties when compared to those of the as-cast alloy. Specifically, the aged ZSr41 alloy had an ultimate tensile strength of 270 MPa, Vickers hardness of 71.5 HV, and elongation at failure of 12.8%. The mechanical properties of the ZSr41 alloy were superior as compared with those of pure magnesium and met the requirements for load-bearing medical implants. Furthermore, the immersion of the ZSr41 alloy in SBF showed a degradation mode that progressed cyclically, alternating between pitting and localized corrosion. The steady-state average degradation rate of the aged ZSr41 alloy in SBF was 0.96 g/(m2·hr), while the pH of SBF immersion solution increased. The corrosion current density of the ZSr41 alloy in SBF solution was 0.41 mA/mm2, which was much lower than 1.67 mA/mm2 for pure Mg under the same conditions. In summary, compared to pure Mg, the mechanical properties of the new ZSr41 alloy improved while the degradation rate decreased due to the addition of Zn and Sr alloying elements and specific processing conditions. The superior mechanical properties and corrosion resistance of the new ZSr41 alloy make it a promising alloy for next-generation implant applications.  相似文献   

18.
The purpose of the present study is to obtain better understanding of the influence of the coating thickness, h, coating formulation, Tg, and fluid bed temperature, Tbed, variables on the resistance to attrition of the coated sodium benzoate reference particles. Three reference coating materials (Tg = 50 – 125 – 150 °C) have been sprayed by using top spray fluid bed coater. Per each coating formulation three different coating levels (h = 1% – 5% – 9% w/w) have been obtained. The coating processes were performed at three different fluid bed temperatures (Tbed = 40 – 55 – 70 °C). The experiments have been designed according to the response surface methodology (RSM). Both single effects and interactions between single effects on the resistance to attrition (response variable) calculated by means of repeated impact tester were evaluated. From statistical analysis, the coating quantity appears to have a predominant effect on the resistance to attrition of the coated particle in these studied ranges of variables. This relationship is linear and positive, which means that an increasing quantity leads to more resistance to attrition. The interaction coating thickness – coating formulation, the interaction between the fluid bed temperature and the coating formulation and the coating formulation as well as the interaction costing thickness – fluid bed temperature were found to be very significant. On the contrary, no direct effect of the fluid bed temperature on the resistance to attrition is detected.  相似文献   

19.
《Advanced Powder Technology》2014,25(5):1653-1660
Nanosized TiO2 particles have been prepared by top down approach using mechanical milling with high energy planetary ball mill at 250 rpm for different extents of time (5, 10, 20, 30 and 40 h). Electroless (EL) Ni–P–TiO2 nanocomposite coatings were developed using alkaline bath containing milled TiO2 nanoparticles (4 g/l). The results show that, the morphology of TiO2 particles milled for 40 h exhibit irregular shape with a particle diameter in the range of 33–45 nm. Wear studies of the coatings with 30 μm thickness were investigated using 1, 1.5 and 2 N loads with 0.1 and 0.2 m/s rotation speeds. The Ni–P–TiO2 nanocomposite coatings exhibit the enhanced hardness and wear resistance as compared to that of Ni–P alloy coatings. Also the composite after heat treatment at 400 °C for 1 h in argon atmosphere showed improved hardness (1010 VHN) and wear resistance (1.5e-06 mm3/N m).  相似文献   

20.
Ternary zinc–cobalt–copper alloys of wide range composition were deposited on to steel substrates from dilute metal sulphate bath. The bath consisted of 1–20 g dm−3 CuSO4·5H2O, 1–30 g dm−3 CoSO4·7H2O, 1–50 g dm−3 ZnSO4·7H2O, 20 g dm−3 Na2SO4 and 150–200 g dm−3 NH2CH2COOH. The effect of bath composition, current density and temperature on the cathodic potential, cathodic current efficiency and composition of the deposits were investigated. The codeposition of ZnCoCu alloys from these solutions can be classified as regular. Increasing current density enhances the rate of Zn deposition but suppresses that of Cu deposition. However, increasing the bath temperature favours Cu deposition. Co content in the deposits is hardly affected by changing these variables. Increasing Cu content in the bath or increasing the applied current density greatly improves the cathodic efficiency for the alloy deposition. X-ray diffraction studies showed that the deposits obtained at high current density (Zn-rich alloy) consisted of a cubic CuZn2 phase, while that obtained at high temperature (Cu-rich alloy) consisted of a face, centred cubic CuCo phase. The structure and morphology of the deposited alloys were characterised by anodic stripping and SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号