首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Microelectronic Engineering》2007,84(5-8):953-957
Annealing effects onto the reflow of imprinted resist patterns have been investigated on 250 nm dense line arrays printed with standard hot embossing lithography and thermoplastic polymer. Atomic force microscopy measurements were performed to point out the annealing temperature and time effects, respectively. The reflow velocity with respect to annealing temperature has been determined. Its variation is ascribed to both resist dynamic viscosity and surface free energy. Our approach demonstrated that imprint cycle time could be significantly reduced by saving cooling down time.  相似文献   

2.
《Microelectronic Engineering》2007,84(5-8):853-859
Imprint lithography has been included on the ITRS Lithography Roadmap at the 32 and 22 nm nodes. Step and flash imprint lithography (S-FIL) is a unique method that has been designed from the beginning to enable precise overlay for creating multilevel devices. A photocurable low viscosity monomer is dispensed dropwise to meet the pattern density requirements of the device, thus enabling imprint patterning with a uniform residual layer across a field and across entire wafers. Further, S-FIL provides sub-100 nm feature resolution without the significant expense of multi-element, high quality projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of templates.This paper addresses steps required to achieve resolution at or below 32 nm. Gaussian-beam writers are now installed in mask shops and are being used to fabricate S-FIL templates. Although the throughput of these systems is low, they can nevertheless be applied towards applications such as unit process development and device prototyping.Resolution improvements were achieved by optimizing the ZEP520A resolution and exposure latitude. Key to the fabrication process was the introduction of thinner resist films and data biasing of the critical features. By employing a resist thickness of 70 nm and by negatively biasing features as much as 18 nm, 28 nm half-pitch imprints were obtained. Further processing improvements show promise for achieving 20 nm half-pitch features on a template.  相似文献   

3.
Due to polymer’s excellent flexibility, transparency, reliability and light weight, it is a good candidate material for substrate of devices including organic electronic devices, biomedical devices, and flexible displays (LCD and OLED). In order to build such devices on polymer, nano- to micron-sized patterning must be accomplished. Since polymer materials reacts with organic solvents or developer solutions which are inevitably used in photolithography and cannot bear high temperature (∼140 °C) process for photoresist baking, conventional photolithography cannot be used to polymer substrate. In this research, monomer based thermal curing imprinting lithography was used to make as small as 100 nm dense line and space patterns on flexible PET (polyethylene-terephthalate) film. Compared to hot embossing lithography, monomer based thermal curing imprint lithography uses monomer based imprint resin which consists of base monomer and thermal initiator. Since it is liquid phase at room temperature and polymerization can be initiated at 85 °C, which is much lower than glass temperature of polymer resin, the pattern transfer can be done at much lower temperature and pressure. Hence, patterns as small as 100 nm were successfully fabricated on flexible PET film substrate by monomer based thermal curing imprinting lithography at 85 °C and 5 atm without any noticeable degradation of PET substrate.  相似文献   

4.
Advanced micro-mechanical characterization methods provide material properties of thin films for modeling thermo-mechanical behavior of thin films for micro-electronic applications. Here, we focus on the local measurement method of nanoindentation for finding visco-elastic properties, and a global method of substrate curvature testing that provides linear elastic properties. Our specimen SiLK, Dow chemicals, is a low-k dielectric thin polymer film with a thickness of 400 nm, 6 and 8 μm, deposited on Si substrate. Our results show temperature dependent linear elastic and linear visco-elastic material properties for thin film materials.  相似文献   

5.
《Microelectronic Engineering》2007,84(5-8):1096-1099
The behaviour of a new epoxy based resist (mr-EBL 6000.1 XP) as a negative resist for e-beam lithography is presented. We demonstrate that it is possible to define sub-100 nm patterns when irradiating thin (120 nm) layers of resist with a 10 keV electron beam. The dependence of resolution and remaining thickness on electron dose, electron energy and photo acid generator (PAG) content is determined. After the electron beam lithography process, the resist is used as a mask for reactive ion etching. It presents a good etch resistance, that allows transfer of patterns to the substrate with resolution below 100 nm.  相似文献   

6.
This study focusses on the investigation of RF power variations (100–300 W) effects on structural, morphological and optical properties of CaCu3Ti4O12 thin film deposited on ITO/glass substrate in a non-reactive atmosphere (Ar). The increase of RF power from 100 W to 300 W led to evolution of (112), (022), (033), and (224) of CCTO XRD peaks. The results indicated that all the films were polycrystalline nature with cubic structure. The crystallite size increased from 20 nm to 25 nm with increasing RF power. FESEM revealed that the films deposited were uniform, porous with granular form, while the grain size increased from 30 to 50 nm. AFM analysis confirmed the increment in surface roughness from 1.6 to 2.3 nm with increasing film grain size. Besides, optical transmittance values decreased to minimum 70% with increasing RF power while optical energy bandgap increased from 3.20 eV to 3.44 eV. Therefore, favorable CCTO thin film properties can be possibly obtained for certain application by controlling RF magnetron sputtering power.  相似文献   

7.
As a simple, low-cost alternative to rheological characterisation of an imprint polymer a novel approach is put forward, the derivation of imprint-relevant characteristic material parameters, here the viscosity, directly from imprint experiments. Imprints are performed at different temperatures with a fingerprint stamp, designed to allow replication of micron-sized linear structures without lateral constraint and independent from their neighbourhood. Under such conditions the squeezed flow theory applies and the viscosity can be determined from the imprint depth. For a typical material in thermal imprint, 25 kg/mol PMMA, a broad agreement with rheological viscosity data could be obtained. Though the result requires critical assessment, the simplicity of the approach is appealing. Such procedure is promising for an easy access to material data for imprint process optimisation.  相似文献   

8.
Silicon nanowires were grown on ITO-coated glass substrates via a pulsed plasma enhanced chemical vapor deposition method, using tin as a catalyst. The thin films of catalyst, with different thicknesses in the range 10–100 nm, were deposited on the substrates by a thermal evaporation method. The effect of the thickness of the thin film catalyst on the morphology of the silicon nanowires was investigated. The scanning/transmission electron microscopy images showed that the wire diameter increased as the thickness of the thin film catalyst increased. The nanowires grown using a thin film thickness of 10 nm were inhomogeneous in diameter, whereas the other thicknesses led to an increase in the homogeneity of the diameters of the nanowires. The dominant wire diameter of the grown silicon nanowires ranged from 70 to 80 nm with 10 nm catalyst thin film thickness, and increased to a range of 190–200 nm with 100 nm catalyst thin film thickness.  相似文献   

9.
The aim of the work presented here was to develop curing polymers for nanoimprint lithography (NIL) enabling short cycle time, low imprint temperature, and an isothermal imprint process. The result is mr-NIL 6000LT: A photochemically curing polymer system for isothermal imprinting by combined thermal and UV nanoimprint lithography. It allows a lower imprint temperature than materials presented previously [C. Schuster, M. Kubenz, F. Reuther, M. Fink, G. Grützner, mr-NIL 6000 – New epoxy-based curing resist for efficient processing in combined thermal and UV nanoimprint lithography, in: Proceedings of SPIE 6517 2007, 65172B.; D.W. Johnson, H. Miller, M. Kubenz, F. Reuther, G. Grützner, Nanoimprinting with SU-8 Epoxy Resists, in: Proceedings of SPIE 6517 2007, 65172A.].The material system chosen is based on a blend of epoxy resins and a photo acid generator. Such epoxy resists cure during the imprint step in combined thermal and UV nanoimprint lithography. Initiated by UV exposure the cationic polymerisation occurs at elevated temperature forming a polymer pattern with significantly increased thermal stability compared to the uncured system.Apart from the material development leading to mr-NIL 6000LT the correlations between the parameters imprint temperature, exposure time and post exposure hold time are investigated in this work. With the applied resin combination a Tg of ?15 °C is obtained. This enables the formation of solid films at room temperature after spin-coating and prebake and nevertheless imprint temperatures in the range of 45–50 °C, which is a distinct decrease compared to the 100–110 °C needed for the previously introduced mr-NIL 6000 [C. Schuster, M. Kubenz, F. Reuther, M. Fink, G. Grützner, mr-NIL 6000 – New epoxy-based curing resist for efficient processing in combined thermal and UV nanoimprint lithography, in: Proceedings of SPIE 6517 2007, 65172B.] or the 65–70 °C necessary for defect-free imprinting of the epoxy-based polymer described in [D.W. Johnson, H. Miller, M. Kubenz, F. Reuther, G. Grützner, Nanoimprinting with SU-8 Epoxy Resists, in: Proceedings of SPIE 6517 2007, 65172A.]. mr-NIL 6000LT exhibits good dimensional stability at 120 °C after curing during the imprint process. This is sufficient for an isothermal imprint process as well as subsequent processes, e.g. metallization or etching.  相似文献   

10.
A powerful approach to increasing the far‐field transparency of copper film window electrodes which simultaneously reduces intraband absorption losses for wavelengths <550 nm and suppresses reflective losses for wavelengths >550 nm is reported. The approach is based on incorporation of a random array of ≈100 million circular apertures per cm2 into an optically thin copper film, with a mean aperture diameter of ≈500 nm. A method for the fabrication of these electrodes is described that exploits a binary polymer blend mask that self‐organizes at room temperature from a single solution, and so is simple to implement. Additionally all of the materials used in electrode fabrication are low cost, low toxicity, and widely available. It is shown that these nanostructured copper electrodes offer an average far‐field transparency of ≥80% and sheet resistance of ≤10 Ω sq−1 when used in conjunction with a conventional solution processed ZnO electron transport layer and their utility in inverted organic photovoltaic devices is demonstrated.  相似文献   

11.
Herein we report, the photosensitivity of in-situ chemical bath deposition (CBD) grown CuS thin film for the first time, also comparatively very short deposition time of 40 min and much lower bath temperature i.e. 45 °C are reported. The structural, surface topographical, optical, electronic and electrical properties of as-grown CuS thin film have been investigated. The XRD analysis revealed the formation of Orthorhombic (Covellite) structure with preferential growth along [113] direction having ~14 nm average crystallite size. Raman spectrum indicating a sharp peak at 474 cm−1 confirms the formation of CuS covellite structure. Polycrystalline nature of the film has been confirmed from the concentric ring pattern obtained from TEM–SAED and AFM revealed the rough surface topography with RMS roughness of ~27 nm. The bond lengths of Cu(1)-S(1) and S(1)-S(1) were obtained from the DFT calculations based on GGA approximation, suggest S-S bond is much stronger as compared to Cu-S bond; these results are in good agreement with the Raman result. The film shows higher absorbance in the visible region with a band gap of 2.2 eV. The electrical properties show a drastic increase in current after light illumination of 50 W which increases with increasing light intensity and tends to attain a saturation state around 200 W. The highest photosensitivity of ~66% has been calculated for 200 W with fast response time of ~34 s and a complete recovery. These results represent CuS thin films promising candidature for photosensor application.  相似文献   

12.
Distortion reduction by load release for imprint lithography   总被引:1,自引:0,他引:1  
Due to the light source limitation and prohibitive cost inherent in conventional photolithography, various nontraditional patterning technologies, such as imprint lithography, electron beam or X-ray lithography have been attempted over the past 10 years. In this paper, a UV imprint lithography process is introduced for patterning sub-micrometer structures by using a soft PDMS mould, and an imprint experimental device with a loading mechanism driven by PZT for generating a time-variant load is described. As shown experimentally, an increased pressing load will reduce the thickness of the resist layer, leading to a reliable etching-through of the resist. It is found, however, that the mechanical pressing can generate geometrical distortion on the patterned resist mainly due to the elasticity. Incorporated with the use of a low viscosity photo-curable resist, a loading process with a load release step is proposed to reduce the geometrical distortion on the resist patterns. In the loading process, the loading force is partially released after the press peak but before the resist curing. Such a loading process can reduce the elastic distortion while attaining a thin remained resist layer. It is shown that this loading process, called Distortion Reduction by Load Release or DRLR simply can be combined with an imprint process for different patterning areas and feature sizes.  相似文献   

13.
Terahertz (THz) radiation from InAs thin films grown by molecular-beam epitaxy on closely lattice-matched p-type GaSb (100) substrates and lattice-mismatched semi-insulating GaAs (100) substrates was investigated. The THz radiation intensity was measured from InAs films with thicknesses between 100 nm and 1.5 μm excited by a femtosecond laser pulse with a wavelength of approximately 780 nm. The radiation intensity increased as the InAs film thickness increased and it exceeded that from a bulk n-type InAs substrate with an electron concentration of 2.3 × 1016 cm−3 when the InAs film thickness was greater than about 500 nm. In addition, the THz intensity from a 1-μm-thick InAs film was greater than that from a bulk p-type InAs substrate. We ascribe this enhanced THz intensity to the wave reflected from the lower interface between the InAs film and the layer grown beneath it. We confirmed this by observing an increased pulse width due to constructive overlap of the reflected wave. The results demonstrate that InAs thin films are promising materials for THz emitting devices.  相似文献   

14.
CdS is one of the highly photosensitive candidate of II–VI group semiconductor material. Therefore CdS has variety of applications in optoelectronic devices. In this paper, we have fabricated CdS nanocrystalline thin film on ultrasonically cleaned glass substrates using the sol–gel spin coating method. The structural and surface morphologies of the CdS thin film were investigated by X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) respectively. The surface morphology of thin films showed that the well covered substrate is without cracks, voids and hole. The round shape particle has been observed in SEM micrographs. The particles sizes of CdS nanocrystals from SEM were estimated to be~10–12 nm. Spectroscopic properties of thin films were investigated using the UV–vis spectroscopy, Photoluminescence and Raman spectroscopy. The optical band gap of the CdS thin film was estimated by UV–vis spectroscopy. The average transmittance of CdS thin film in the visible region of solar spectrum found to be~85%. Optical band gap of CdS thin film was calculated from transmittance spectrum ~2.71 eV which is higher than bulk CdS (2.40 eV) material. This confirms the blue shifting in band edge of CdS nanocrystalline thin films. PL spectrum of thin films showed that the fundamental band edge emission peak centred at 459 nm also recall as green band emission.  相似文献   

15.
Nanostructures of CdO thin films are prepared by chemical bath deposition (CBD) technique. The synthesized film is annealed in static air by using the hotplate at 373, 473, 573 and 673 K for 10 min. The effect of annealing temperature on structural, morphological, optical and electrical properties of CdO thin films has been investigated. The prepared thin films are characterised by X-ray diffraction (XRD), atomic force microscope (AFM), optical reflection microscope (ORM), UV–Visible Spectrophotometer and electrical resistivity. XRD shows the emergence of the cubic phase of CdO film in a preferred orientation (111) plane at 573 K. The AFM and ORM show that CdO films have smooth homogeneous surface in the formula with the emergence of nanoclusters gathering as nanoparticles with the average of grain size about 100 nm at 573 K. The optical properties prove that deposited films have high transparency within the visible range of the spectrum that reaches to more than 85% with a wide band gap that extends from 2.42 eV to 2.7 eV. The electrical properties of the CdO films show that resistivity decreases with increased annealing temperatures. In addition, it is proved that more than one activation energy appears and they change according to the temperature of annealing and this comes as a result of the polycrystalline structure. This study indicates that the properties of CdO thin films could be improved with annealing temperature and these films can be used in many technological applications.  相似文献   

16.
Chemically amplified photo resist are blend materials whose main compounds are a polymer matrix and an added photo acid generator. Lithography processes that allow imaging patterns in a CAR resist films consist in exposing at first the film to UV light and then to post-bake the film in order to initiate a chemical reaction that induces a local solubility switch of the resist. Sensitivity of the resist is measured by monitoring the UV dose needed to induce the proper solubility switch. For positive tone resist, the efficiency of the photolysis of the PAG to an acid and the deprotection kinetic during the post-exposure bake directly govern the resist sensitivity. This article deals with measurements of the PAG photolysis efficiency by real time spectroscopic ellipsometry. C Dill parameter of 193 nm photoresists is then measured for various film thicknesses and PAG loading.  相似文献   

17.
In the present research, an approach of converting amorphous-silicon (a-Si) thin films into polycrystalline thin films using the third harmonics of an all-solid-state pulsed Nd3+:YAG laser (355 nm) is studied. Two different samples of a-Si thin films on alkali-free glass (a-Si/glass) substrates and a-Si thin film on crystalline-Si substrates (a-Si/c-Si) are laser treated at different laser fluences ranging from 170 to 960 mJ/cm2. The amount of heat incident on the surface has been analyzed theoretically by solving the one-dimensional heat-equation model. The ablation threshold, the region of crystallization and the depth of crystallization have been investigated theoretically. The influence of laser irradiation, ablation and crystallinity has been experimentally analyzed through in-situ reflectivity measurements, scanning electron microscopy (SEM) and Raman spectroscopy studies. In the case of a-Si/c-Si, the extent of crystallinity and the influence of structural characteristics on electronic properties are studied using the Hall-effect technique. The ablation threshold and the range of crystallization regime are in good agreement with the theoretical results. Laser fluence between 300 and 500 mJ/cm2 is required for crystallization and the ablation threshold is estimated to be above 500 mJ/cm2 for a-Si thin film with a thickness up to 400 nm.  相似文献   

18.
In this work, we present a technology for a high precision nanostructure replication process based on ultraviolet nanoimprint lithography for the application in the field of thin‐film photovoltaics. The potential of the technology is demonstrated by the fabrication of microcrystalline silicon thin‐film prototype solar cells. The high accuracy replication of random microstructures made from sputtered and etched ZnO:Al, used to scatter the incident light in thin solar cells, is shown by local topography investigations of the same 7.5 × 7.5 µm2 area on the master and the replica. Different types of imprint resists and imprint moulds were investigated to find the optimal, high precision replication technology. Two types of thin‐film silicon solar cells, in p‐i‐n and n‐i‐p configuration, were fabricated to study the potential of the imprint technology for different applications. It is shown that solar cells deposited on an imprinted glass hold similar performances compared with reference solar cells fabricated with a standard process on textured ZnO:Al. Thus, it is demonstrated that the replication of light scattering structures by using an imprint process is an attractive method to decouple the scattering properties from the layer forming the electrical front contact. Because a simple and cheap high throughput process is used, this study additionally proves the relevance for the industrial mass production in the field of photovoltaics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
We have demonstrated top-gate polymer field-effect transistors (FETs) with ultra-thin (30–50 nm), room-temperature crosslinkable polymer gate dielectrics based on blending an insulating base polymer such as poly(methyl methacrylate) with an organosilane crosslinking agent, 1,6-bis(trichlorosilyl)hexane. The top-gate polymer transistors with thin gate dielectrics were operated at gate voltages less than ?8 V with a relatively high dielectric breakdown strength (>3 MV/cm) and a low leakage current (10–100 nA/mm2 at 2 MV/cm). The yield of thin gate dielectrics in top-gate polymer FETs is correlated with the roughness of underlying semiconducting polymer film. High mobilities of 0.1–0.2 cm2/V s and on and off state current ratios of 104 were achieved with the high performance semiconducting polymer, poly(2,5-bis(3-alkylthiophen-2yl)thieno[3,2-b]thiophene.  相似文献   

20.
The 3 omega method is the best established method for measuring the thermal properties of thin films (>100 nm) and nanowires. Theoretically, the method could be applied to many more types of samples, leading to new knowledge, but to date little effort has been made to extend its applicability. An enabling set of technologies has been tested at the Fraunhofer-IPM. The technologies developed encompass a new design of microheater, the measurement of bulk samples with a prefabricated microheater on adhesive tapes and polymer sheets, the measurement of tiny bulk samples glued to the underside of polymer sheets, a fully automated experimental setup, and a new numerical tool adapted to the new type of heater. The new design of microheater and software were validated using float glass as a reference material. A microheater on adhesive tape was used to measure accurately the thermal properties of sintered thermoelectric materials. The thermal conductivity of a very small melt-spun nanocomposite sample glued to the underside of a Kapton™ sheet was measured. The potential of the new design of microheater to measure very thin (~nm) films is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号