首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《机械科学与技术》2017,(4):626-631
采用分离涡模拟(DES)方法对车外流场进行瞬态计算得到车身表面脉动压力,将虚拟激励法应用于求解汽车内部的气动噪声场,利用声振耦合法得到车内场点的声压级频谱。对不同车速不同位置的噪声特性进行了对比分析和道路实验验证。结果表明:汽车气动噪声为宽频谱,在某一特征频率处达到峰值后呈指数型下降;噪声截止频率和峰值频率随着车速的提高向高频移动;声压级大小与脉动压力强度以及辐射面积有关;将虚拟激励法应用于气动噪声求解是可行的。  相似文献   

2.
高速列车表面脉动压力是引起气动噪声的主要根源,研究车体表面脉动压力对噪声控制等方面有重要意义。采用大涡模拟(LES)仿真计算高速列车运行时头车和尾车外流场的脉动压力,利用二进正交db小波将脉动压力分解为能量互不重叠的正交频带,并分析脉动压力在各频带上的能量分布规律。数值仿真结果表明:列车表面脉动压力由平均压力和在平均压力附近上下波动的脉动部分组成,脉动压力在全频带均有分布,且主要集中在低频区域;随着列车运行速度的提高,车体表面脉动压力幅值迅速增大,主要能量向高频区域移动;头车、尾车脉动压力变化趋势相似,且头车脉动压力大于尾车脉动压力。  相似文献   

3.
以发动机冷却风扇总成为研究对象,采用CFD和CAA分步耦合方法进行气动噪声预测。考虑风架对流场的影响,通过大涡模拟(LES)进行瞬态计算捕获风扇表面压力脉动。考虑风架护风圈对声传播的影响,建立声学边界元模型(BEM),对冷却风扇总成气动噪声进行三维声场预测与声压频谱分析。最后进行噪声试验,结果表明发动机冷却风扇总成气动噪声数值预测准确,可为低噪声设计提供参考。  相似文献   

4.
为更加准确预测发动机进气噪声,发展了采用瞬态边界计算进气歧管流场的方法,并联合声学软件进行声场预测。从一维仿真模型获得可靠的压力和速度边界用于流场计算;采用大涡模拟(LES)和分离涡模拟(DES)两种求解算法模拟歧管内的流场;通过声学有限元方法计算进气口辐射的气动噪声。LES和DES两种方法的流场结果对比表明,DES结果与LES非常接近,同时耗时更少;声场结果与实验结果吻合较好,证明了本文预测方法的准确性;模拟结果和压力边界频谱图的对比分析使空滤器和进气歧管设计更具针对性。  相似文献   

5.
冷却塔是一种对车内牵引变流器进行强迫通风冷却的散热装置,它的噪声会对周围的环境造成严重的污染。该文以某型冷却塔为研究对象,对冷却塔内的流场与声场进行了数值仿真计算。在流场稳态仿真计算中,分析了冷却塔内流场的速度分布和叶片上的压力分布。在流场瞬态仿真计算中,对叶片处涡分布和叶片周围的压力脉动进行分析,定性地分析了噪声源的位置和气动噪声产生的原因。在声场仿真计算中,将流场瞬态结果变换到频域中,并将其作为冷却塔声源进行研究,分析了测点的频谱特性和声压级分布等。  相似文献   

6.
分析了高速轿车气流噪声的产生原理,通过求解Lighthill方程得出车辆外部气流噪声只与车身表面的脉动压力有关。采用RNG k-ε和LES相结合的方法求解车外流场,对三个速度下车辆外部流场和表面脉动压力进行仿真模拟,并分析了车辆外流场的特性,得到了车身关键点处的脉动压力级,并将左侧窗中部分监测点的脉动压力级的计算值和实验值进行了对比,得出两者变化趋势基本一致,误差低于5%。经计算分析表明,用大涡模拟方法来计算汽车脉动压力是可行的。  相似文献   

7.
为研究高速列车受电弓气动噪声特性,利用大涡模拟方法计算高速列车受电弓表面脉动压力,并将其作为远场声场计算输入;利用Lighthill声学比拟理论计算高速列车受电弓远场气动噪声,并研究其声压级特性、频谱特性及速度依赖规律。计算结果表明:高速列车受电弓气动噪声的声压级在纵向方向上变化较大,最大声压级位于受电弓后方横截面上;声压级在距轨面0.5~5.0 m的垂向方向上变化较小,最大差异在0.5 d B以内;声压级在距轨道中心线7.5~30 m的横向方向上发生衰减,且不同车速下声压级衰减12.0~12.3 d B。通过频谱分析发现,受电弓气动噪声的主要能量分布在100~700 Hz,主要频率随车速增加往高频部分移动;受电弓气动噪声的功率谱密度随测点距轨道中心线距离的增加显著减小,但其主要频率基本不发生变化。受电弓气动噪声声压级随着车速的增加而显著增大,且与车速的对数近似成线性关系。  相似文献   

8.
为了辨识滚动转子压缩机排气气流噪声的主要成分,对其排气过程建立了计算气动声学分析模型.首先使用基于滑移网格和脱落涡模拟的CFD计算对压缩机排气过程的压力脉动进行直接求解,结合声学有限元计算分析了压力脉动中各成分的贡献;其次使用基于动网格的CFD计算求解压缩泵腔及消声器的流场,计算了泵腔出口流量变化.仿真结果和实验测量的...  相似文献   

9.
气动噪声是高速行驶下汽车的主要噪声源,在组成气动噪声的三部分声源中,偶极子声源占主导地位,而偶极子声源又取决于车身表面脉动压力。应用双向流固耦合方法对汽车的表面脉动压力进行数值计算,利用CFX软件进行流场计算,ANSYS软件进行结构计算,以MFX-ANSYS/CFX为数据耦合平台,采用双向同步求解的方法,对流场和侧窗结构响应进行联合求解,并将耦合前后的计算结果与风洞试验进行对比。结果表明,流固耦合作用使得流场压力脉动增强,且车速越高,流固耦合作用对气动噪声的影响越大;与非耦合数值计算相比,耦合计算结果更接近试验值,具有更高的准确性。  相似文献   

10.
对于受高频、宽频带随机激励的复杂车辆结构动力学响应及其噪声辐射问题,传统的计算方法难以获得满意结果.采用统计能量分析(SEA)方法对某国产轿车的车内声场进行了建模、仿真研究和声贡献分析,并以此为基础进行了车内噪声的改进设计,分别讨论了地板阻尼层、侧窗玻璃厚度和吸声材料对车内噪声的影响.通过计算各个子系统闻的能量流动,分析车内噪声的产生机理,讨论了不同吸、隔声材料对车内噪声响应特性的影响,研究结果可为车内声学设计提供参考.  相似文献   

11.
为研究高速列车车内气动噪声特性,利用统计能量分析方法构建包括422个车体结构子系统及170个车内声腔子系统的高速列车车内气动噪声计算模型。通过理论公式计算各个子系统的模态密度和内损耗因子,以及不同子系统之间的耦合损耗因子,通过大涡模拟方法计算各个车体结构子系统的湍流边界层输入激励,进而计算分析高速列车车内气动噪声。计算结果表明:各个车体结构子系统的脉动压力谱随着频率的增加呈现减小的趋势。随着车速的增加,各个频率下的高速列车车内气动噪声均增大。高速列车车内气动噪声的线性计权声压级具有明显的低频特性,而A计权声压级的显著频带范围较宽。司机室声腔A计权声压级的显著频带范围是100~2 000 Hz,乘客室声腔A计权声压级的显著频带范围是50~2 000 Hz。高速列车车内气动噪声的线性计权声压级和A计权声压级均与车速的对数近似呈线性关系。  相似文献   

12.
汽车高速行驶条件下,气流噪声成为了主要的噪声源。在组成气流噪声的三部分中,偶极子源噪声占主导地位,而偶极子源噪声又取决于车身表面脉动压力。利用fluent软件,采用大涡模拟(LES)方法,对汽车模型的表面脉动压力进行数值模拟,计算所得脉动压力值与试验测试值基本吻合。对模型的挡风玻璃、A柱和C柱都进行修改,并对侧窗脉动压力值进行模拟计算。模拟仿真表明,汽车挡风玻璃圆弧化和A柱的圆角化有利于降低侧窗脉动压力值,但是C柱的圆角化并不能够降低侧窗脉动压力值,反而会增加侧窗后半部分的脉动压力值。  相似文献   

13.
利用HyperWorks软件建立了客车骨架结构有限元模型和客车车内声腔声学有限元模型,在Virtual Lab中建立了声固耦合模型,并进行模态分析。采集了客车怠速工况下发动机悬置被动端振动加速度以及车内前中后排乘客处声压值;将测量的激励信号施加于声固耦合模型进行频率响应分析,计算10~200 Hz范围内的车内声压响应,并与试验测试得到的声压值进行对比分析。分析表明,仿真响应频谱与试验响应频谱的峰值频率对应较好,虽然仿真值小于试验值,但是利用此模型还是能够较准确得预测车内振动噪声响应。  相似文献   

14.
《流体机械》2016,(6):11-16
为了降低小型垂直轴风力发电机的气动噪声,对其噪声产生机理进行了分析。首先,在瞬态计算时运用大涡模拟(LES)模型对在一定工况下的三维风轮周围的流场进行分析;其次,在声学计算时运用FW-H方程对风轮产生的气动噪声进行分析并得出频谱;最后,通过实例验证了该方法能有效预测其气动噪声。结果表明:小型垂直轴风力发电机的气动噪声主要是涡流噪声;监测点的噪声值随着离风轮旋转轴半径的增加而减小,且在垂直于叶轮旋转轴的平面上具有指向性。小型垂直轴风力发电机的气动噪声分析为其进一步低噪声优化提供了依据。  相似文献   

15.
汽车自动变速器油泵内部流场十分复杂,而复杂的流体流动直接影响其振动噪声问题。通过建立自动变速器油泵流场仿真模型模拟其内部流场流动,重点分析了油泵的压力脉动情况与空化特性,并结合仿真流量值与实验值及理论值对比,验证了模型的有效性。对油泵流动噪声进行声学模拟,结合声场仿真分析与流场仿真结果研究了压力脉动与流动噪声的关系。结果表明自动变速器油泵的噪声频率成分以离散噪声为主,压力脉动是油泵噪声的主要激励源。  相似文献   

16.
针对某R22半封闭螺杆制冷压缩机,通过动网格的划分建立充分考虑轴向排气孔口面积变化的排气流场模型,利用Fluent软件进行流场的动态数值模拟;将模拟得到的流场结果作为LMS的边界条件,模拟得到了双螺杆压缩机排气噪声频谱图;通过试验测量结果对模拟结果进行了验证;并进一步分析压缩机排气流道优化设计对气流脉动和噪声的影响。研究结果表明:模拟与试验的压力脉动最大值的误差在5%以内,噪声频谱的变化趋势基本一致;压缩机排气过程气流脉动主要集中在排气孔口处,并在排气腔内有明显衰减;光顺排气腔流道和增设周向排气导流槽,可有效减少排气过程的压力脉动;模拟和试验结果都表明:以模拟结果为依据的排气腔流道优化有效地降低了压缩机噪声,说明本文所述研究方法可指导半封闭双螺杆制冷压缩机的优化设计。  相似文献   

17.
以高速列车为研究对象,分别建立高速列车的车身结构和车室声腔有限元模型,最终得到高速列车声固耦合模型。在ANSYS中计算出车身结构的振动位移响应,并以其作为声学仿真的边界条件。使用Virtual.Lab声学仿真软件对声固耦合模型进行仿真,得到所取观测场点的声压级频谱。为了验证所建立的高速列车声固耦合模型的准确性,在运行的高速列车上测试了车速在240 km/h和260 km/h下观测点处的A计权声压级频谱。经分析得出,车内噪声随着速度的增加而增大,计算得到的声压级频谱与实测结果的变化趋势基本一致。为了了解乘客乘坐高速列车的舒适程度,使用SIMPACK软件对其平稳舒适性进行动力学仿真。得出列车运行时平稳舒适性为优。  相似文献   

18.
为研究动车组牵引变压器冷却风机的气动噪声特性,针对某型冷却风机进行气动噪声试验,得到在不同测点处的声压级和频谱特性。同时,针对该型风机建立仿真模型,模型中考虑电动机、支架等实际结构,结合计算流体力学方法和Lighthill声学比拟理论,对冷却风机的非定常流动特性和远场声场进行数值仿真,与试验数据进行对比。结果表明,通过大涡模拟得到的冷却风机噪声主要阶次与试验具有较好的一致性;在基于风机侧面评价点声压功率谱密度所估算声功率贡献量中,宽频带噪声占比为74.76%,是后续减振降噪的重点;阶次噪声占比为25.24%,结合仿真分析发现,阶次的主要来源为进风口动叶轮和出风口动叶轮处气流脉动压力所形成的偶极子声源,其中进风口第33阶次和出风口第10阶次最为重要。所得分析结果可为该型风机的气动性能和气动噪声的改进提供切实可行的参考依据。  相似文献   

19.
本文对某改进前后的弯掠叶片轴流风机进行了气动和噪声性能的实验和数值模拟。气动计算采用了定常转动坐标系结合SIMPLEC算法和标准k-e湍流模型,获得风机静压和叶片尾涡特征宽度分布,采用Fukano噪声简化模型获得测量点线性声压级;气动噪声模拟采用非定常滑移网格方法,利用FW-H声压模型获得声学接收点处的噪声频谱。结果显示,气动性能计算与实验较符合,噪声结果有偏差。  相似文献   

20.
以某乘用车气动噪声为研究对象建立了整车流体动力学模型,并用该模型提取车窗脉动压力,然后将该压力作为激励加载到车内声腔模型中对驾驶员耳旁噪声进行仿真分析,仿真结果与试验数据吻合.将车身表面Curle噪声源强度作为优化目标,采用离散伴随法进行灵敏度识别,进而确定后视镜、A柱截面、引擎盖为优化区域.采用哈默斯雷试验设计方法构...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号