首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用SEM和TEM研究了室温(23℃)和中温(650、750、815℃)下第3代镍基粉末高温合金(FGH98)拉伸变形显微组织、行为和机制。结果表明:含有多模尺寸分布γ′相的合金具有优良的拉伸性能,室温拉伸主要变形机制为位错剪切γ′相形成层错,并在γ′相周围形成位错环,阻碍后续位错运动。中温拉伸变形机制为位错剪切γ′相形成层错和形变孪晶,随着变形温度的升高,形变孪晶增多。给出了a/3112不全位错剪切γ′相形成层错和形变孪晶共存的模型,随着应变量的增加,在连续相邻的{111}滑移面上层错堆积变多,促进连续孪晶的形成,协调了γ和γ′相两相之间的变形,有助于释放两相之间的变形应力和提高合金强韧性。  相似文献   

2.
研究了一种新型镍钴基变形高温合金在650—815℃和不同加载载荷条件下蠕变后的变形组织.结果表明,经过固溶热处理后合金中存在2种尺寸的γ′相.当蠕变温度高于725℃时,大γ′相开始粗化.蠕变温度为650℃时,合金主要通过位错滑移切割γ′相形成层错的方式变形;蠕变温度在725—760℃之间时,蠕变变形组织主要为层错和微孪晶.随着加载载荷和蠕变温度的升高,层错和微孪晶不再独立存在于γ′相中,而是贯穿γ′相和基体;当蠕变温度升高至815℃时,合金主要通过位错绕过γ′相的方式变形.  相似文献   

3.
利用微观分析方法研究了第二代镍基单晶合金DD6标准热处理和980℃/1050℃/1200℃/长期时效对γ/γ′形态演化和拉伸性能的影响。结果显示:镍基单晶合金DD6在较高温度时效处理后会发生形态不稳定,1050℃/时效800 h后γ′强化相逐渐连接成筏;1200oC时效100 h后,γ/γ′微结构的立方度明显下降并逐渐向球形边界转化,并伴有少量细小基体相嵌入强化组织。在γ/γ′界面附近分布着大量位错线,位错运动随着时效处理时间和温度的增长而加强。1050℃/时效1000 h后在固溶元素富集区析出块状沉淀相,其脆性特征在低温拉伸时会塞积位错运动形成应力集中。760℃高温下的抗拉强度、屈服强度和延伸率随着时效时间增长而减小,断面收缩率有所波动。  相似文献   

4.
利用微观分析方法研究了第二代镍基单晶合金 DD6 标准热处理和980 ℃/1050 ℃/1200 ℃/长期时效对γ/γ′形态演化和拉伸性能的影响。结果显示:镍基单晶合金DD6在较高温度时效处理后会发生形态不稳定,1050 ℃/时效800 h后γ′强化相逐渐连接成筏;1200 oC时效100 h后,γ/γ′微结构的立方度明显下降并逐渐向球形边界转化,并伴有少量细小基体相嵌入强化组织。在γ/γ′界面附近分布着大量位错线,位错运动随着时效处理时间和温度的增长而加强。1050 ℃/时效1000 h后在固溶元素富集区析出块状沉淀相,其脆性特征在低温拉伸时会塞积位错运动形成应力集中。760 ℃高温下的抗拉强度、屈服强度和延伸率随着时效时间增长而减小,断面收缩率有所波动  相似文献   

5.
采用SEM、EBSD和TEM研究了室温(25℃)和中温(650、700和750℃)下新型镍钴基高温合金力学性能及其变形机制。结果表明:室温下,合金的屈服强度和延伸率分别是1176 MPa和22.5%,主要的变形机制为大量位错发生滑移,不全位错切割γ′相形成孤立层错。当温度达到650℃时,观察到微孪晶切割二次γ′相和γ基体,以连续层错切割二次γ′相和γ基体变形为主。在700~750℃时,以连续层错和微孪晶同时切割二次γ′相和γ基体为主,并且层错的长度和微孪晶的厚度随温度的升高而增加。650~750℃范围内,切割一次γ′相的机制从APB转变到孤立层错。讨论了中温条件下变形机制随温度的变化以及微孪晶、层错等的形成机制。其中给出了a/6<112>不全位错剪切γ′相形成超点阵外禀层错(SESF)的一种原子互换扩散模型,解释微孪晶的形成过程,为进一步研制高性能水平的新型镍钴基高温合金提供参考。  相似文献   

6.
研究了一种含Re单晶高温合金在20~1100℃的拉伸性能。结果表明:在室温至600℃时合金屈服强度随温度的升高轻微增大,从600至760℃时合金屈服强度明显降低到一个极小值,到800℃时急剧增至最大值。从室温至800℃时伸长率和面缩率缓慢降低;在800℃以上时,屈服强度急速下降。在600℃以下时,γ′被反相畴界切割而在其中留下伸长的超晶格层错;在760℃时,γ′被a/3-112-位错切割,这是由于层错能降低而导致强度降低;当高于800℃时,位错以绕越机制通过γ′。  相似文献   

7.
通过对合金进行不同温度的固溶处理、蠕变曲线测定及组织形貌观察,研究了热处理工艺对4.5%Re镍基单晶合金中温蠕变行为的影响。结果表明:随着固溶温度提高,可降低元素的偏析程度,提高合金的蠕变性能。在760℃/800MPa条件的蠕变期间,合金中γ′相不形成筏状组织,但在近断口区域,立方γ′相的扭曲程度增加。合金在蠕变期间的变形特征是位错在基体中运动和剪切γ′相,其中,切入γ′相的<110>超位错可由{111}面交滑移到{100}面,形成K-W锁,而切过γ′相的<110>超位错在{111}面发生分解,可形成(1/3)<112>超肖可莱不全位错+层错的位错组态,阻碍位错运动和抑制位错的交滑移。  相似文献   

8.
对K439B合金开展800℃、3000 h长期时效,研究合金显微组织及力学性能的演变,分析室温拉伸及815℃、379 MPa持久性能的变形机制。结果表明:热处理态K439B合金中的γ’相呈球状,晶界存在MC及M23C6 2种碳化物,而枝晶间仅存在MC碳化物。在800℃长期时效过程中,γ’相的粗化遵循Ostwald熟化机制且形貌趋于立方化,γ′相粗化速率为71.7 nm3/h;晶界和枝晶间MC碳化物发生退化,M23C6碳化物析出含量逐渐增加。时效3000 h后晶界γ’相与M23C6碳化物存在■的位向关系。热处理态合金的室温抗拉强度和屈服强度分别为1159.0和911.5 MPa,815℃、379 MPa持久寿命为150.4 h。长期时效后γ’相尺寸增加使得位错的运动方式由以位错在基体中滑移为主向位错切入γ′相为主转变,γ′相中出现了更多的堆垛层错,合金室温拉伸强度和815℃、379 MPa持久寿命均降低。  相似文献   

9.
采用真空冶炼和定向凝固工艺制备一种具有优异抗腐蚀性能的镍基高温合金,并利用光学显微镜、扫描电镜和透射电镜研究合金的微观组织,分析合金在不同温度下的拉伸性能。结果表明,除γ′颗粒和γ基体外,在合金晶界上析出了一些MC碳化物、M3B2硼化物和Ni5Hf相。合金拉伸性能对温度有很强的依赖性,并呈现明显的的反常屈服和中温脆性行为。在650°C以下,合金的屈服强度随着温度的升高而略微降低,但抗拉强度几乎没有变化。当温度在650°C和750°C之间时,合金的屈服、抗拉强度快速升高,但拉伸塑性显著降低,并在700°C时达到最低值。当温度进一步升高时,合金的屈服、抗拉强度逐渐降低,塑性升高。透射电镜观察发现,在低温条件下,位错切割γ′是主要的变形机制;在高温条件下,位错绕过γ′是主要的变形机制;由位错切割γ′转变至位错绕过γ′的温度约为800°C。合金的反常屈服和中温脆性行为主要归因于合金中高的γ′含量。此外,碳化物和共晶组织对合金的中温脆性行为也有影响。  相似文献   

10.
通过对6%Re/5%Ru单晶镍基合金(质量分数)进行蠕变性能测试和组织观察,研究了合金的超高温蠕变行为和影响因素。结果表明:测定出合金在(1160℃,120 MPa)的蠕变寿命为206 h。中期稳态阶段,位错在基体中滑移和攀移越过γ′相是合金的变形特征,γ基体中溶解的难熔元素可增加位错在基体中运动的阻力。超高温蠕变期间,随温度提高γ′相发生溶解,可减小筏状γ′相的尺寸,提高位错攀移越过γ′相的速率,特别是当温度大于1170℃时,合金的施加温度敏感性使筏状γ′相的尺寸减小,应变速率提高,这是合金蠕变寿命大幅度降低的主要原因。蠕变后期,基体位错可在位错网破损处切入γ′相,其中,切入γ′相的位错可由{111}面交滑移至{100}面形成K−W锁,抑制位错的滑移和交滑移,可改善合金的蠕变抗力。而在颈缩区域较大的有效应力可开动位错的双取向滑移,致使筏状γ′相扭折,并在扭折区域发生裂纹的萌生和扩展,直至断裂,这是合金在超高温蠕变期间的变形和损伤机制。  相似文献   

11.
利用多功能雾化沉积装置,制备了Ni3Al-Mo高温合金.拉伸性能测试表明:喷射沉积Ni3Al-Mo合金的屈服强度有明显的"R"特性,即喷射沉积合金的屈服强度随着温度的增加而增加,在760 ℃时达到最大值;随着温度的继续增加,屈服强度会逐渐降低.利用TEM对位错结构分析,阐明了合金屈服强度与微观结构之间的关系.研究结果表明,试验合金所具有的屈服强度随温度的变化规律主要是由不同温度下γ′及γ相内的位错缠结状况、位错对的形态及数量和六面体滑移系的开动程度决定的.裂纹的TEM分析表明,随着变形应力的增加,裂纹在晶界部位产生,然后迅速扩展,而且在不同的晶面内存在一些不同的滑移带.喷射沉积合金在室温、中温及高温下裂纹严格沿八面体滑移系(111)面开裂.  相似文献   

12.
对[001]取向镍基单晶合金进行预压缩处理,获得P-型筏状结构后进行拉伸蠕变实验,测定P-型γ'合金(预压缩态)与立方γ'合金(热处理态)的相对蠕变性能.结果表明:在800 ℃,600 MPa条件下,P-型γ'合金的初期蠕变应变及稳态蠕变速率相对较高,而持久寿命相对较短.TEM观察显示,P-型γ'合金在蠕变初始阶段除了基体中的{111}<110>多滑移启动外,位错还以层错和超位错的形式切入γ'相.在980-1020℃温度区间及恒定载荷200 MPa条件下,P-型γ'合金的稳态蠕变速率相对较低,持久寿命相对较高.在稳态蠕变初期,合金中的γ'相有效地抑制了位错沿垂直γ/γ'界面的攀移运动;而在稳态蠕变中期,γ'相被稠密的位错网包围,位错难以切入,合金的蠕变抗力提高.  相似文献   

13.
研究了新一代抗热腐蚀单晶高温合金DD13在不同温度下的拉伸行为,包括断口形貌、显微组织和位错组态等。结果表明:温度对合金的屈服强度和塑性影响明显。室温下,合金的屈服强度和抗拉强度分别为1059和1097 MPa;当实验温度在700℃时,合金的屈服强度和抗拉强度达到峰值,分别为1108和1340 MPa;而随着实验温度的继续升高,合金强度却呈明显的下降趋势,当实验温度达到1050℃时,屈服强度和抗拉强度分别为262和443 MPa。实验温度对合金塑性的影响则成相反趋势,合金在700℃时表现出相对较差的塑性。分析发现,不同实验温度下,γ/γ′界面的共格错配度和位错克服强化相γ′方式的差异是影响合金屈服强度的主要因素,而合金达到屈服点后,位错是否发生交割缠绕现象是影响抗拉强度和塑性的关键因素。700℃下,在许多强化相γ′内均发现不同滑移系层错交割、缠绕现象。  相似文献   

14.
[011]取向镍基单晶合金蠕变特征   总被引:2,自引:0,他引:2  
研究了一种[011]取向镍基单晶合金的拉伸蠕变特征及其变形期问的微观组织结构.结果表明:在750℃/680 MPa条件下,合金的初期蠕变和稳态蠕变速率相对较高,蠕变寿命较短.TEM观察显示,蠕变期间的变形特征是1/20<110>位错在基体中运动,发生反应形成1/3<112>超Shockley不全位错切入γ'相后产生层错;在870℃/500 MPa条件下,蠕变中期出现不均匀滑移带并有大量超不全位错剪切γ'相,使合金具有较高的应变速率;在980℃/200 MPa条件下,合金具有较长的蠕变寿命和较低的稳态蠕变速率.不同Burgers矢量的位错相遇发生反应形成界面位错网,位错网可以阻止位错切入γ'相,γ'相沿[010]方向扩散生长,逐渐转变成筏形组织.蠕变后期位错切入,γ'相,是合金变形的主要方式.  相似文献   

15.
采用力学性能测试与组织观察相结合的方式研究了时效温度和保温时间对优质GH738合金组织及性能的影响规律。结果表明,时效温度和时间均会对γ′相的体积分数和尺寸产生影响。当时效温度在720~800 ℃时,随着时效温度升高,合金强度下降,一次和二次γ′相分别长大30 nm和8 nm,一次γ′相体积分数增加,二次γ′相体积分数减少,时效温度为800 ℃时一次γ′相体积分数达到峰值,约为8%。当保温时间为0~48 h时,随时效时间延长,合金强度先升高后降低,两类γ′相分别长大20 nm和6 nm,一次γ′相体积分数先增后减,二次γ′相体积分数则变化相反。当保温时间为8 h时,两类γ′相体积分数分别达到峰/谷值,含量约为8%和12%。γ′相尺寸和体积分数的变化,特别是体积分数的变化,导致位错的两种强化机制作用效果不同,致使强度发生变化。  相似文献   

16.
通过蠕变曲线的测定及微观组织形貌观察,研究[111]取向镍基单晶合金在高温低应力条件下的组织结构与蠕变行为。结果表明:经完全热处理后,[111]取向单晶合金的组织结构是立方γ′相以共格方式嵌镶在γ基体中,并沿100方向规则排列;在1 040~1 080℃、137~180 MPa的温度和应力范围内,该取向单晶合金表现出明显的温度和施加应力敏感性。蠕变期间,γ′相沿与应力轴呈一定角度形成筏状组织,蠕变后期在近断口区域筏状γ′相发生粗化和扭折。[111]取向单晶合金在蠕变期间的变形特征是位错在γ基体通道中运动和剪切筏状γ′相,由于形变量较大,较多位错切入筏状γ′相后使其形成亚晶结构,其中,蠕变后期大量位错切入筏状γ′相导致合金的蠕变抗力降低,是合金发生蠕变断裂的主要原因。  相似文献   

17.
采用电子束气相沉积方法制备了Ni-Cr-Al合金,对试样进行了固溶及时效处理,考察了20~1000℃不同温度下合金的拉伸性能及位错结构特征。结果表明,随着试验温度升高,合金拉伸强度逐渐降低,断口形态大多为韧窝和准解理断裂构成。室温下,当合金中的γ'粒子达到临界尺寸后,位错弯曲绕过γ'粒子; 400℃时,位错密度增加,缺陷界面形成外禀层错,而反相畴界的存在会使位错切过γ'粒子的阻力增大; 700℃时,位错能够沿着基体弯曲移动,并产生攀移和交滑移; 1000℃时,位错线变长并发生弯曲,最终形成包围γ'粒子的位错环。  相似文献   

18.
通过高周疲劳性能测试和组织形貌观察,研究了K416B镍基高温合金700℃的高周疲劳行为.结果表明,在700℃和应力比R=-1条件下,合金疲劳寿命随着应力的升高而减小,高周疲劳强度为175 MPa;在低应力条件下,形变位错在γ基体中发生不同取向滑移,随着应力增加,位错剪切γ'相,形成层错;在拉压高周疲劳期间,合金中开动多个滑移系,并沿不同方向发生扭曲变形,在γ+γ'共晶及碳化物附近产生应力集中,致使裂纹源萌生于合金表面附近的共晶及块状碳化物处.随着高周疲劳进行,裂纹在扩展区沿枝晶间扩展,并在瞬断区发生典型的解理断裂.  相似文献   

19.
通过蠕变性能测试、组织形貌观察及位错组态的衍射衬度分析,研究了镍基单晶高温合金在中温/高应力稳态蠕变期间的变形机制.结果表明,在760℃,760 MPa和800℃,650 MPa蠕变期间,剪切g′相的位错可发生分解,分解后领先的a/3112超点阵Shockley不全位错切入g′相,拖曳的a/6112Shockley不全位错滞留在g′/g相界面,2个不全位错之间形成超点阵内禀堆垛层错(SISF);此外,剪切进入g′相的超点阵位错可由{111}面交滑移至{100}面,形成具有非平面位错芯结构的K-W锁,可抑制位错的滑移和交滑移,提高合金的蠕变抗力.在850℃,500 MPa蠕变期间,合金中的层错消失,部分剪切进入筏状g′相的a110超点阵位错可分解形成"2个a/2110不全位错加反相畴界(APB)"的组态,而合金中K-W锁的消失是由高温热激活致使立方体滑移的位错重新交滑移至八面体所致.  相似文献   

20.
采用光学显微镜、场发射扫描电镜及化学相分析等方法,研究了采用铸锭挤压/等温锻复合工艺制备的GH710合金经不同固溶温度热处理后的显微组织特征、室温拉伸和高温持久性能。结果表明,固溶温度对合金次生MC型碳化物和γ′相的影响显著。随着固溶温度升高,合金的次生MC型碳化物溶解度增大,钉扎晶界作用减弱,晶粒尺寸增大,室温拉伸性能降低;同时,固溶温度升高,使合金一次γ′相减少,二次γ′相增加,增加位错的绕越路径,提高合金持久寿命。为使合金获得良好的室温拉伸和高温性能匹配,固溶温度应控制在1170~1180℃;在标准热处理制度下,合金的抗拉强度达到1332 MPa,伸长率达到11.7%,表现出优异的强度和塑性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号