共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, the influence of hot isostatic pressing(HIP) process on the 418 alloy produced by metal injection molding(MIM) technique(named as MIM 418)was investigated based on the characteristic analysis of 418 alloy powder. And comparison analysis of the microstructure and mechanical property between the MIM 418 and as-cast 418 alloys was performed by scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS),and X-ray diffraction(XRD). The results show that MIM418 alloy exhibits fine grain(~30 μm) and uniform microstructure. The defects existing in MIM 418 alloy formed during sintering process can be eliminated through HIP treatment, and the relative density increases from97.0 % to 99.5 %. The mechanical property can be improved significantly because of the elimination of defects, and the tensile strength and elongation are1,271 MPa and 16.8 %, respectively, which are increased by 34.5 % and 180 % compared with K418 alloy after solution heat treatment. 相似文献
2.
缩松缺陷是熔模铸造中常出现的问题,其原因是热节部位得不到补缩,因此使铸件热节部位得到充分的补缩就能有效解决缩松缺陷,一般通过增加钢水补缩量、打通补缩通道、改善散热条件等。就实际生产中常见的缩松产生原因及其解决方案进行阐述。 相似文献
3.
采用3组不同参数的热等静压(HIP)工艺对K4125镍基高温合金进行显微组织演变研究。结果表明,3种热等静压工艺制备的合金中Hf、Mo等在MC碳化物中的分布区域略有不同,Ta、Mo、Co、Cr、Ti及Al等为正偏析元素,W、Ni为负偏析元素,与其他元素相比较,Ni、Co、Cr偏析程度较小,提高热等静压温度及压力,各元素的偏析程度均有所降低,γ/γ′共晶组织含量逐渐减少,同时枝晶干γ′相的尺寸显著降低,但面积分数无明显变化。此外,3种热等静压合金均出现大块状MC碳化物碎化、二次MC碳化物析出及晶界细小碳化物形成等现象,提高热等静压温度及压力后,这种现象加剧,且碳化物中Ta、Ti含量降低,TaC、TiC的分解倾向增加。 相似文献
4.
This work reported the Ar-induced porosity in powder metallurgy Ti-5Al-2.5Sn alloy prepared by hot isostatic pressing(HIPing).The obtained microstructures of powder compacts were studied through optical and scanning electron micro-scopes,X-ray tomography,and the mechanical properties evaluated through tensile and impact tests.The results showed that the Ar-induced porosity is related to the hollow powder with gas bubble and the Ar leakage of sealed container during the powder densification.The hollow powder with gas bubble shows no obvious effects on mechanical properties of as-HIPed powder compacts.The Ar content decreases with the increasing shrinkage of encapsulated powder.0.7% Ar-induced porosity degrades the impact toughness,but no reductions of tensile properties were obtained.Ar content test is an effective method to detect the powder compacts with Ar concentration. 相似文献
5.
利用EBSD、SEM、OM、热模拟试验机等对比研究了不同粉末粒度制备的一种新型镍基粉末高温合金(WZA3)在不同热压缩变形条件下的变形行为和组织差异性。结果表明:相比细粉制备的HIP-01样品而言,粗粉枝晶组织明显,成分偏析严重,其制备的HIP-02样品中残余粗大γ′较多。低温(1050、1080℃)高应变速率(1、0.1s-1)时,HIP-01样品峰值应力值高于HIP-02。热压缩后HIP-01样品边缘开裂情况较HIP-02严重,HIP-01样品保留了大部分原始热等静压组织,裂纹优先在粉末原始颗粒边界(priorparticleboundary,PPB)处产生,HIP-02样品边缘出现了部分再结晶组织。在1080℃/0.001 s -1时,HIP-02样品峰值应力较HIP-01低约30 MPa,HIP-02样品热压缩过程再结晶现象明显,再结晶晶粒均匀,HIP-01样品出现项链晶组织,再结晶不充分。粗大γ′有利于促进1050和1080℃时HIP-02样品的再结晶。高温(1150℃)、低应变速率(0.001、0.01s -1)时,γ′全部溶解进基体... 相似文献
6.
The addition of ceramic particulate reinforcement via cryomilling can significantly increase the physical and mechanical properties of Al alloys. In the present study, boron carbide (B 4C) was cryomilled with Al 5083 to form a nano-grained metal matrix powder. This powder was blended with unmilled Al 5083 to increase ductility and was then consolidated into plates by three methods: (1) hot isostatic pressing (HIPping) followed by high strain rate forging (HSRF), (2) HIPping followed by two-step quasi-isostatic forging (QIF), and (3) three-step QIF. The effects of process method on microstructure and mechanical behavior for the final consolidated nano-composite plates were investigated. 相似文献
7.
采用预合金粉末热等静压(hot isostatic pressing ,HIP)近净成形工艺制备了一种新型高强韧钛合金,研究了钛合金与低碳钢包套的界面反应。结果表明,钛合金与低碳钢包套之间存在波浪状的界面反应层,其厚度为8μm,钛合金中的合金元素Al、Mo和V向低碳钢中发生了一定程度的扩散,而两种材料的基体元素Ti和Fe发生扩散的程度要明显低于前者;通过选择性化学洗可以将包套去除,并将反应层厚度减少2.5μm,但微观上仍存在波浪状反应层;通过后续的喷砂处理可以进一步减小反应层厚度,并且使界面反应层平直。 相似文献
8.
Selective laser melting (SLM) was used to manufacture Al composite parts from Al/5–15 wt%Fe 2O 3 powder mixtures and followed by hot isostatic pressing (HIP) post-treatment, in order to assess the influence of HIP on density, hardness and microstructure. It was found that the HIP post-treatment slightly increased the density, but it failed to efficiently densify the material due to formation of thick oxide bands between solids within SLM process, expanding with increasing the iron oxide. The hardness also decreased after HIP, attributed to high temperature annealing impact of HIP post-treatment on microstructure (such as coarsening, coalescence and transformation of phases). The microstructural phases before HIP were a combination of equilibrium and stable phases (i.e. Al 13Fe 4 and α-Al 2O 3) plus phases such as Al 2Fe, AlFe, Fe 3Al, and intermediate-Al 2O 3 (formed in high Fe 2O 3 contents), but only equilibrium and stable phases remained after HIP post-treatment. 相似文献
9.
The effect of hot isostatic pressing (HIPing) on as-sintered α-Al 2O 3 ceramics for total hip arthroplasty (THA) was investigated. The sinterability of these powders and the minimum temperature required to obtain closed porosity have been determined by pressureless sintering in air at temperatures between 1280 and 1460 °C for 2 h. Temperatures of 1300 and 1325 °C and applied pressures of 150 MPa for 30 min were utilised in the HIP cycles. Densities >98% of the theoretical density (TD) have been obtained after HIPing, and the grain sizes previously obtained during pressureless sintering increased slightly during the HIP treatment. The microstructures before and after HIP treatments were observed by means of scanning electron microscopy (SEM). The fracture toughness was obtained by the indentation fracture technique using a Vickers hardness tester at a load of 10 N with a dwell time of 15 s for all cases. The ceramics obtained at the lowest HIP temperature (1300 °C) presented a grain size of 0.62 ± 0.04 μm, hardness of 20.5 ± 0.6 GPa, and fracture toughness of 4.8 ± 0.3 MPa m 1/2. The reported values were higher than those obtained by other authors and were in concordance with international standards that could make these ceramics available as a replacement for metal-on-polyethylene in orthopaedic surgery. 相似文献
10.
在高温度梯度真空定向凝固炉中,采用螺旋选晶法制备了单晶高温合金,再在1180℃/150 MPa条件下对其进行热等静压,然后进行标准热处理,研究了热等静压对单晶高温合金组织和不同条件下持久性能的影响。结果表明,合金热等静压后,铸态组织的共晶含量基本保持不变,γ′相尺寸增加,立方化程度增加,γ基体通道变宽。热处理组织的γ′相尺寸稍有减小,立方化程度增加。在760℃/800 MPa和980℃/250 MPa条件下,合金的持久寿命增加;而在1100℃/140 MPa条件下,粒状碳化物的析出导致持久寿命没有提高,与未热等静压的合金持平。 相似文献
11.
通过热等静压-扩散连接工艺直接连接CuAgZn和GH909,利用扫描电镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)观察接头的显微组织和成分,并通过测试显微硬度和剪切强度研究接头的力学性能.结果表明,CuAgZn/GH909结合界面紧密完整,接头密实、均匀,无未连接的缺陷.接头的最大显微硬度为HV 443,高于... 相似文献
12.
The aim of this experimental study was to comprehend the relative rolling contact fatigue (RCF) performance and failure modes of functional graded WC–NiCrBSi thermal spray coatings in the as-sprayed and post processed state, by means of Hot Isostatic Pressing (HIPing) and vacuum heating. Functional graded WC–NiCrBSi coatings were deposited by a JP5000 system. HIPing was carried out at two different furnace temperatures of 850 and 1200 °C, while vacuum heating was performed at the elevated temperature of 1200 °C. The rate of heating and cooling was kept constant at 4 °C/min. Rolling contact fatigue tests were conducted using a modified four ball machine under various tribological conditions of contact stress and configuration, in full film elasto hydrodynamic lubrication. Results are discussed in terms of the relative RCF performance of the as-sprayed and post-treated coatings, and also surface and sub-surface examination of rolling elements using scanning electron microscope (SEM), light microscope and surface interferometry. Test results reveal that performance of the coating was dependant on the microstructural changes due to post-treatment. Coatings heat-treated at 1200 °C displayed superior performance in RCF testing over the as-sprayed coatings at all stress levels (2, 2.3, 2.7 GPa) with emphasis on RCF performance at lower stress load of 2 GPa, where no failure occurred. Improvement in RCF performance was attributed to the diffusion between the carbides and matrix resulting in improved strength. At higher levels of contact stress, failure was surface initiated, and was attributed to initiation and propagation of micro-cracks at the edge of rolling contact region which led to coating delamination. 相似文献
13.
采用磁控溅射沉积40μm铜膜作为中间层,分别在950、980和1050℃下通过热等静压(HIP)焊接技术制备了国际热核聚变实验堆(ITER)计划W/CuCrZr偏滤器部件焊接模块,以考察温度对磁控溅射沉积40μm铜膜作为中间层W/CuCrZr偏滤器部件焊接质量的影响。通过扫描电子显微镜(SEM)和EDS能谱分析焊接界面的形貌和成分,利用超声波无损探伤(NDT)仪对焊接界面缺陷进行了检测,利用力学拉伸试验机考察了焊接界面的结合强度和CuCrZr合金的力学性能。结果表明:磁控溅射法沉积40μm铜膜作为中间层,可以有效地提高HIP焊接界面质量。特别是在980℃时,所制备的焊接模块能够满足ITER计划对于偏滤器部件连接性能的要求。 相似文献
14.
Nanocomposites of yttria-stabilized zirconia (YSZ), containing 20 and 40 wt% alumina, were prepared by a two-step process: (1) fine-particle aggregates of the constituent phases were melted and homogenized in a high enthalpy plasma, prior to rapid quenching in water to obtain metastable starting powders, and (2) the metastable powders were consolidated by hot isostatic pressing (HIP), under conditions designed to ensure the formation of nanocomposites by controlling the metastable-to-stable phase transformation during sintering. In both cases, the resulting nanocomposites had completely uniform structures, comprising 27 and 50 vol% of -Al 2O 3 in a tetragonal YSZ matrix phase. Measurements of hardness and indentation toughness were correlated with observed structures. 相似文献
15.
Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000 °C), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size left( {d = Mleft( {T_{{{text{HIP}}}} - N} right)^{ - 2} } right) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys. 相似文献
16.
粉末冶金是金属材料成形工艺的重要环节,但现有各种模型都无法完整模拟金属粉末在压制前后期特有的力学性能。本文通过引入致密金属的屈服强度,对Drucker-Prager/Cap模型进行修改,将其屈服面限制在致密金属的Von Mises屈服面以内,并随着压制过程,使之无限接近Von Mises屈服面。通过与文献试验数据对比,证明了本文提出的修正模型具有相当高的精度。最终将该模型应用于高温合金的热等静压模拟,其变形模拟结果与实验相符,并且应力分布比传统Drucker-Prager/Cap模型的计算结果更加合理。 相似文献
17.
Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000 °C), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size left( {d = Mleft( {T_{{{text{HIP}}}} - N} right)^{ - 2} } right) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys. 相似文献
18.
Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000 °C), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size left( {d = Mleft( {T_{{{text{HIP}}}} - N} right)^{ - 2} } right) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys. 相似文献
19.
Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000 °C), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size left( {d = Mleft( {T_{{{text{HIP}}}} - N} right)^{ - 2} } right) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys. 相似文献
20.
研究了热等静压处理对镍基铸造高温合金内部缺陷及显微组织的影响。结果表明,铸态镍基高温合金中存在大量疏松、孔洞等缺陷,合金由γ相及γ′相两相共存,γ′相的数量较多但分布不均匀,并有少量已发生团聚。1040 ℃热等静压处理可明显减少合金中疏松和孔洞等显微缺陷,增加强化相数量,但γ′相有少量聚集长大。1200 ℃下热等静压处理基本消除了合金中的疏松组织,但仍存在少量的微孔,原始的γ′相溶化并重新析出了细小的二次γ′相。 相似文献
|